A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array

被引:664
|
作者
Chao, Dongliang [1 ]
Zhu, Changrong [1 ,2 ]
Song, Ming [1 ,3 ]
Liang, Pei [4 ]
Zhang, Xiao [5 ]
Nguyen Huy Tiep [1 ]
Zhao, Haofei [6 ]
Wang, John [2 ]
Wang, Rongming [6 ]
Zhang, Hua [5 ]
Fan, Hong Jin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117574, Singapore
[3] Xuzhou Univ Technol, Sch Chem & Chem Engn, Xuzhou 221018, Jiangsu, Peoples R China
[4] China Jiliang Univ, Coll Opt & Elect Technol, Hangzhou 310038, Zhejiang, Peoples R China
[5] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[6] Univ Sci & Technol, Sch Math & Phys, Beijing Key Lab Magnetophotoelect Composite & Int, Beijing 100083, Peoples R China
关键词
flexible electrode; layered zinc orthovanadate; quasi-solid-state; zinc array; zinc-ion batteries; ELECTROCHEMICAL ENERGY-STORAGE; NA-ION; HIGH-CAPACITY; LI; INTERCALATION; CATHODE; MG; NANOSHEETS; ULTRAFAST; DENSITY;
D O I
10.1002/adma.201803181
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-ion batteries are under current research focus because of their uniqueness in low cost and high safety. However, it is still desirable to improve the rate performance by improving the Zn2+ (de)intercalation kinetics and long-cycle stability by eliminating the dendrite formation problem. Herein, the first paradigm of a high-rate and ultrastable flexible quasi-solid-state zinc-ion battery is constructed from a novel 2D ultrathin layered zinc orthovanadate array cathode, a Zn array anode supported by a conductive porous graphene foam, and a gel electrolyte. The nanoarray structure for both electrodes assures the high rate capability and alleviates the dendrite growth. The flexible Zn-ion battery has a depth of discharge of approximate to 100% for the cathode and 66% for the anode, and delivers an impressive high-rate of 50 C (discharge in 60 s), long-term durability of 2000 cycles at 20 C, and unprecedented energy density approximate to 115 Wh kg(-1), together with a peak power density approximate to 5.1 kW kg(-1) (calculation includes masses of cathode, anode, and current collectors). First principles calculations and quantitative kinetics analysis show that the high-rate and stable properties are correlated with the 2D fast ion-migration pathways and the introduced intercalation pseudocapacitance.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Pre-potassiated hydrated vanadium oxide as cathode for quasi-solid-state zinc-ion battery
    Li, Qifei
    Ye, Xiangxiang
    Yu, Hong
    Du, Chengfeng
    Sun, Wenping
    Liu, Weiling
    Pan, Hongge
    Rui, Xianhong
    CHINESE CHEMICAL LETTERS, 2022, 33 (05) : 2663 - 2668
  • [2] Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage
    Tang, Heng
    Chen, Wenhao
    Li, Na
    Hu, Zhongliang
    Xiao, Li
    Xie, Yujia
    Xi, Liujiang
    Ni, Ling
    Zhu, Yirong
    ENERGY STORAGE MATERIALS, 2022, 48 : 335 - 343
  • [3] Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte
    Huang, Yuan
    Zhang, Jiyan
    Liu, Jiuwei
    Li, Zixuan
    Jin, Shunyu
    Li, Zigang
    Zhang, Shengdong
    Zhou, Hang
    MATERIALS TODAY ENERGY, 2019, 14
  • [4] Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte
    Kimilita, Patrick Dedetemo
    Hayashi, Mikihiro
    Nkomba, Hugues Museba
    Fukunishi, Haruka
    Lobo, Ntumba
    Mizuno, Tatsuya
    Eale, Louis Efoto
    Mwilambwe, Ernest Kakuji
    ELECTROCHIMICA ACTA, 2023, 462
  • [5] Fluoride-Based Stable Quasi-Solid-State Zinc Metal Battery with Superior Rate Capability
    Xu, Zhibin
    Zhang, Zirui
    Li, Xilong
    Dong, Qi
    Qian, Yitai
    Hou, Zhiguo
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (12) : 15574 - 15584
  • [6] Fluoride-Based Stable Quasi-Solid-State Zinc Metal Battery with Superior Rate Capability
    Xu, Zhibin
    Zhang, Zirui
    Li, Xilong
    Dong, Qi
    Qian, Yitai
    Hou, Zhiguo
    ACS APPLIED MATERIALS & INTERFACES, 2023,
  • [7] Nano-wired polyaniline/VS2 composite materials for quasi-solid-state supercapacitor and zinc-ion battery applications
    Zafar, Saad
    Singh, Santosh K.
    Lochab, Bimlesh
    MATERIALS ADVANCES, 2023, 4 (11): : 2425 - 2436
  • [8] Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling High-Rate Long-Life Aqueous Zinc-Ion Battery
    Fang, Guozhao
    Hang, Shuquan
    Chen, Zixian
    Cui, Peixin
    Zheng, Xusheng
    Pan, Anqiang
    Lu, Bingan
    Lu, Xihong
    Zhou, Jiang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (44)
  • [9] Conformal Conducting Polymer Shells on V2O5 Nanosheet Arrays as a High-Rate and Stable Zinc-Ion Battery Cathode
    Xu, Dongming
    Wang, Huanwen
    Li, Fuyun
    Guan, Zhecun
    Wang, Rui
    He, Beibei
    Gong, Yansheng
    Hu, Xianluo
    ADVANCED MATERIALS INTERFACES, 2019, 6 (02):
  • [10] Vacancy Engineering on MnSe Cathode Enables High-Rate and Stable Zinc-Ion Storage
    Zhong, Wenping
    Zhao, Rui
    Zhu, Yirong
    Xu, Yuting
    Chen, Wenhao
    Peng, Chao
    ADVANCED FUNCTIONAL MATERIALS, 2024,