Localization properties of the asymptotic density distribution of a one-dimensional disordered system

被引:3
作者
Hainaut, Clement [1 ]
Clement, Jean-Francois [1 ]
Szriftgiser, Pascal [1 ]
Garreau, Jean Claude [1 ]
Rancon, Adam [1 ]
Chicireanu, Radu [1 ]
机构
[1] Univ Lille, UMR 8523 PhLAM Lab Phys Lasers Atomes & Mol, CNRS, F-59000 Lille, France
关键词
ANDERSON LOCALIZATION; SCALING PROPERTIES; QUANTUM; EIGENFUNCTIONS; DIFFUSION; MATRICES; ABSENCE; CHAOS;
D O I
10.1140/epjd/s10053-022-00426-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Anderson localization is the ubiquitous phenomenon of inhibition of transport of classical and quantum waves in a disordered medium. In dimension one, it is well known that all states are localized, implying that the distribution of an initially narrow wave packet released in a disordered potential will, at long time, decay exponentially on the scale of the localization length. However, the exact shape of the stationary localized distribution differs from a purely exponential profile and has been computed almost fifty years ago by Gogolin. Using the atomic quantum kicked rotor, a paradigmatic quantum simulator of Anderson localization physics, we study this asymptotic distribution by two complementary approaches. First, we discuss the connection of the statistical properties of the system's localized eigenfunctions and their exponential decay with the localization length of the Gogolin distribution. Next, we make use of our experimental platform, realizing an ideal Floquet disordered system, to measure the long-time probability distribution and highlight the very good agreement with the analytical prediction compared to the purely exponential one over 3 orders of magnitude.
引用
收藏
页数:10
相关论文
共 47 条
[21]   QUANTUM DYNAMICS OF A NONINTEGRABLE SYSTEM [J].
GREMPEL, DR ;
PRANGE, RE ;
FISHMAN, S .
PHYSICAL REVIEW A, 1984, 29 (04) :1639-1647
[22]   Experimental realization of an ideal Floquet disordered system [J].
Hainaut, Clement ;
Rancon, Adam ;
Clement, Jean-Francois ;
Manai, Isam ;
Szriftgiser, Pascal ;
Delande, Dominique ;
Garreau, Jean Claude ;
Chicireanu, Radu .
NEW JOURNAL OF PHYSICS, 2019, 21 (03)
[23]   Experimental Observation of a Time-Driven Phase Transition in Quantum Chaos [J].
Hainaut, Clement ;
Fang, Ping ;
Rancon, Adam ;
Clement, Jean-Francois ;
Szriftgiser, Pascal ;
Garreau, Jean-Claude ;
Tian, Chushun ;
Chicireanu, Radu .
PHYSICAL REVIEW LETTERS, 2018, 121 (13)
[24]   Ratchet effect in the quantum kicked rotor and its destruction by dynamical localization [J].
Hainaut, Clement ;
Rancon, Adam ;
Clement, Jean-Francois ;
Garreau, Jean Claude ;
Szriftgiser, Pascal ;
Chicireanu, Radu ;
Delande, Dominique .
PHYSICAL REVIEW A, 2018, 97 (06)
[25]   Controlling symmetry and localization with an artificial gauge field in a disordered quantum system [J].
Hainaut, Clement ;
Manai, Isam ;
Clement, Jean-Francois ;
Garreau, Jean Claude ;
Szriftgiser, Pascal ;
Lemarie, Gabriel ;
Cherroret, Nicolas ;
Delande, Dominique ;
Chicireanu, Radu .
NATURE COMMUNICATIONS, 2018, 9
[26]   Return to the Origin as a Probe of Atomic Phase Coherence [J].
Hainaut, Clement ;
Manai, Isam ;
Chicireanu, Radu ;
Clement, Jean-Francois ;
Zemmouri, Samir ;
Garreau, Jean Claude ;
Szriftgiser, Pascal ;
Lemarie, Gabriel ;
Cherroret, Nicolas ;
Delande, Dominique .
PHYSICAL REVIEW LETTERS, 2017, 118 (18)
[27]   SIMPLE-MODELS OF QUANTUM CHAOS - SPECTRUM AND EIGENFUNCTIONS [J].
IZRAILEV, FM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 196 (5-6) :299-392
[28]   SCALING PROPERTIES OF SPECTRA AND EIGENFUNCTIONS FOR QUANTUM DYNAMICAL AND DISORDERED-SYSTEMS [J].
IZRAILEV, FM .
CHAOS SOLITONS & FRACTALS, 1995, 5 (07) :1219-1234
[29]   Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment [J].
Lemarie, Gabriel ;
Chabe, Julien ;
Szriftgiser, Pascal ;
Garreau, Jean Claude ;
Gremaud, Benoit ;
Delande, Dominique .
PHYSICAL REVIEW A, 2009, 80 (04)
[30]   Experimental Test of Universality of the Anderson Transition [J].
Lopez, Matthias ;
Clement, Jean-Francois ;
Szriftgiser, Pascal ;
Garreau, Jean Claude ;
Delande, Dominique .
PHYSICAL REVIEW LETTERS, 2012, 108 (09)