Nonstationary micropolar fluid flow through porous medium

被引:5
作者
Aganovic, I [1 ]
Tutek, Z [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
porous medium; micropolar fluid; unsteady flow; homogenization; two-scale convergence; memory effect; decay of solution;
D O I
10.1016/S0362-546X(96)00284-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:3171 / 3178
页数:8
相关论文
共 16 条
[1]  
Aganovic I., 1995, MATH MODELLING FLOW, P3
[2]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[3]  
Allaire G., 1989, ASYMPTOTIC ANAL, V2, P203, DOI [10.3233/ASY-1989-2302, DOI 10.3233/ASY-1989-2302]
[4]  
ALLAIRE G, 1992, PITMAN RES NOTES MAT, V267, P1
[5]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[6]   THEORY OF THERMOMICROFLUIDS [J].
ERINGEN, AC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 38 (02) :480-&
[7]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[8]  
LIONS JL, 1981, SOME METHODS MATH AN
[9]   DARCYS-LAW FOR SLOW VISCOUS-FLOW PAST A STATIONARY ARRAY OF BUBBLES [J].
LIPTON, R ;
AVELLANEDA, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :71-79
[10]  
Lukaszewicz G., 1988, REND ACCAD NAZ SC 40, V12, P83