On-Demand Processing of Data Cubes from Satellite Image Collections with the gdalcubes Library

被引:50
作者
Appel, Marius [1 ]
Pebesma, Edzer [1 ]
机构
[1] Univ Munster, Inst Geoinformat, Heisenbergstr 2, D-48149 Munster, Germany
关键词
earth observations; satellite imagery; R; data cubes; Sentinel-2;
D O I
10.3390/data4030092
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Earth observation data cubes are increasingly used as a data structure to make large collections of satellite images easily accessible to scientists. They hide complexities in the data such that data users can concentrate on the analysis rather than on data management. However, the construction of data cubes is not trivial and involves decisions that must be taken with regard to any particular analyses. This paper proposes on-demand data cubes, which are constructed on the fly when data users process the data. We introduce the open-source C++ library and R package gdalcubes for the construction and processing of on-demand data cubes from satellite image collections, and show how it supports interactive method development workflows where data users can initially try methods on small subsamples before running analyses on high resolution and/or large areas. Two study cases, one on processing Sentinel-2 time series and the other on combining vegetation, land surface temperature, and precipitation data, demonstrate and evaluate this implementation. While results suggest that on-demand data cubes implemented in gdalcubes support interactivity and allow for combining multiple data products, the speed-up effect also strongly depends on how original data products are organized. The potential for cloud deployment is discussed.
引用
收藏
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 2008, Open Source Approaches in Spatial Data Handling, DOI [DOI 10.1007/978-3-540-74831-15, 10.1007/978-3-540-74831-1_5]
[2]   Open and scalable analytics of large Earth observation datasets: From scenes to multidimensional arrays using SciDB and GDAL [J].
Appel, Marius ;
Lahn, Florian ;
Buytaert, Wouter ;
Pebesma, Edzer .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 :47-56
[3]  
Baumann P., 1998, SIGMOD Record, V27, P575, DOI 10.1145/276305.276386
[4]  
Baumann P, 2018, ISSI SCI REP SER, V15, P91, DOI 10.1007/978-3-319-65633-5_5
[5]   A Topology Based Spatio-Temporal Map Algebra for Big Data Analysis [J].
Gebbert, Soeren ;
Leppelt, Thomas ;
Pebesma, Edzer .
DATA, 2019, 4 (02)
[6]  
Giuliani G, 2017, BIG EARTH DATA, V1, P100, DOI 10.1080/20964471.2017.1398903
[7]   Google Earth Engine: Planetary-scale geospatial analysis for everyone [J].
Gorelick, Noel ;
Hancher, Matt ;
Dixon, Mike ;
Ilyushchenko, Simon ;
Thau, David ;
Moore, Rebecca .
REMOTE SENSING OF ENVIRONMENT, 2017, 202 :18-27
[8]  
Hoyer S., 2017, Journal of Open Research Software, V5, DOI [10.5334/jors.1483, DOI 10.5334/JORS.1483, 10.5334/jors.148, DOI 10.5334/JORS.148]
[9]  
Inglada J., 2009, P 2009 IEEE INT GEOS, V4, P76
[10]   The Australian Geoscience Data Cube - Foundations and lessons learned [J].
Lewis, Adam ;
Oliver, Simon ;
Lymburner, Leo ;
Evans, Ben ;
Wyborn, Lesley ;
Mueller, Norman ;
Raevksi, Gregory ;
Hooke, Jeremy ;
Woodcock, Rob ;
Sixsmith, Joshua ;
Wu, Wenjun ;
Tan, Peter ;
Li, Fuqin ;
Killough, Brian ;
Minchin, Stuart ;
Roberts, Dale ;
Ayers, Damien ;
Bala, Biswajit ;
Dwyer, John ;
Dekker, Arnold ;
Dhu, Trevor ;
Hicks, Andrew ;
Ip, Alex ;
Purss, Matt ;
Richards, Clare ;
Sagar, Stephen ;
Trenham, Claire ;
Wang, Peter ;
Wang, Lan-Wei .
REMOTE SENSING OF ENVIRONMENT, 2017, 202 :276-292