TOWARDS UNIVERSAL PHYSICAL ATTACKS ON CASCADED CAMERA-LIDAR 3D OBJECT DETECTION MODELS

被引:14
|
作者
Abdelfauah, Mazen [1 ]
Yuan, Kaiwen [1 ]
Wang, Z. Jane [1 ]
Ward, Rabab [1 ]
机构
[1] Univ British Columbia, ECE Dept, Vancouver, BC V6T 1Z4, Canada
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Adversarial attacks; cascaded multimodal; 3D object detection; point cloud; deep learning;
D O I
10.1109/ICIP42928.2021.9506016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a universal and physically realizable adversarial attack on a cascaded multi-modal deep learning network (DNN), in the context of self-driving cars. DNNs have achieved high performance in 3D object detection, but they are known to be vulnerable to adversarial attacks. These attacks have been heavily investigated in the RGB image domain and more recently in the point cloud domain, but rarely in both domains simultaneously - a gap to be filled in this paper. We use a single 3D mesh and differentiable rendering to explore how perturbing the mesh's geometry and texture can reduce the robustness of DNNs to adversarial attacks. We attack a prominent cascaded multi-modal DNN, the Frustum-Pointnet model. Using the popular KITTI benchmark, we showed that the proposed universal multi-modal attack was successful in reducing the model's ability to detect a car by nearly 73%. This work can aid in the understanding of what the cascaded RGB-point cloud DNN learns and its vulnerability to adversarial attacks.
引用
收藏
页码:3592 / 3596
页数:5
相关论文
共 50 条
  • [11] RoIFusion: 3D Object Detection From LiDAR and Vision
    Chen, Can
    Fragonara, Luca Zanotti
    Tsourdos, Antonios
    IEEE ACCESS, 2021, 9 (09): : 51710 - 51721
  • [12] LiDAR 3D Object Detection Based on Improved PointRCNN
    Gao, Han
    Chen, Ying
    Ni, Lizheng
    Deng, Xiuhan
    Zhong, Kai
    Yan, Chengzhi
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (22)
  • [13] LXL: LiDAR Excluded Lean 3D Object Detection With 4D Imaging Radar and Camera Fusion
    Xiong, Weiyi
    Liu, Jianan
    Huang, Tao
    Han, Qing-Long
    Xia, Yuxuan
    Zhu, Bing
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 79 - 92
  • [14] 3D Vehicle Detection Using Cheap LiDAR and Camera Sensors
    Mehtab, Sabeeha
    Yan, Wei Qi
    Narayanan, Ajit
    PROCEEDINGS OF THE 2021 36TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2021,
  • [15] 3D Flash LiDAR Object Detection and Tracking on Edge Hardware
    Lompado, Art
    Carvalho, Daniel R. M.
    Brown, Jarrod P.
    IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE, NAECON 2024, 2024, : 25 - 29
  • [16] Generating Datasets from 3D CAD Models for Object Detection
    Lee, Wei-chen
    Huang, Shih-hsuan
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [17] LiDAR-Based Symmetrical Guidance for 3D Object Detection
    Chu, Huazhen
    Ma, Huimin
    Liu, Haizhuang
    Wang, Rongquan
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 472 - 483
  • [18] A survey of 3D object detection
    Wei Liang
    Pengfei Xu
    Ling Guo
    Heng Bai
    Yang Zhou
    Feng Chen
    Multimedia Tools and Applications, 2021, 80 : 29617 - 29641
  • [19] LXLv2: Enhanced LiDAR Excluded Lean 3D Object Detection with Fusion of 4D Radar and Camera
    Xiong, Weiyi
    Zou, Zean
    Zhao, Qiuchi
    He, Fengchun
    Zhu, Bing
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2862 - 2869
  • [20] A survey of 3D object detection
    Liang, Wei
    Xu, Pengfei
    Guo, Ling
    Bai, Heng
    Zhou, Yang
    Chen, Feng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29617 - 29641