TOWARDS UNIVERSAL PHYSICAL ATTACKS ON CASCADED CAMERA-LIDAR 3D OBJECT DETECTION MODELS

被引:18
作者
Abdelfauah, Mazen [1 ]
Yuan, Kaiwen [1 ]
Wang, Z. Jane [1 ]
Ward, Rabab [1 ]
机构
[1] Univ British Columbia, ECE Dept, Vancouver, BC V6T 1Z4, Canada
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Adversarial attacks; cascaded multimodal; 3D object detection; point cloud; deep learning;
D O I
10.1109/ICIP42928.2021.9506016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a universal and physically realizable adversarial attack on a cascaded multi-modal deep learning network (DNN), in the context of self-driving cars. DNNs have achieved high performance in 3D object detection, but they are known to be vulnerable to adversarial attacks. These attacks have been heavily investigated in the RGB image domain and more recently in the point cloud domain, but rarely in both domains simultaneously - a gap to be filled in this paper. We use a single 3D mesh and differentiable rendering to explore how perturbing the mesh's geometry and texture can reduce the robustness of DNNs to adversarial attacks. We attack a prominent cascaded multi-modal DNN, the Frustum-Pointnet model. Using the popular KITTI benchmark, we showed that the proposed universal multi-modal attack was successful in reducing the model's ability to detect a car by nearly 73%. This work can aid in the understanding of what the cascaded RGB-point cloud DNN learns and its vulnerability to adversarial attacks.
引用
收藏
页码:3592 / 3596
页数:5
相关论文
共 21 条
[1]  
Cao Y., 2019, Adversarial Objects Against LiDAR-Based Autonomous Driving Systems
[2]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[3]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[4]  
Goodfellow Ian J., 2014, INT C LEARNING REPRE
[5]   EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection [J].
Huang, Tengteng ;
Liu, Zhe ;
Chen, Xiwu ;
Bai, Xiang .
COMPUTER VISION - ECCV 2020, PT XV, 2020, 12360 :35-52
[6]  
Liu H. T. D., 2018, arXiv preprint arXiv:180802651
[7]  
Liu S., 2019, CoRR abs/1901.05567
[8]  
Moller T., 1997, J. Graph. Tools, V2, P21, DOI DOI 10.1080/10867651.1997.10487468
[9]   Universal adversarial perturbations [J].
Moosavi-Dezfooli, Seyed-Mohsen ;
Fawzi, Alhussein ;
Fawzi, Omar ;
Frossard, Pascal .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :86-94
[10]   Frustum PointNets for 3D Object Detection from RGB-D Data [J].
Qi, Charles R. ;
Liu, Wei ;
Wu, Chenxia ;
Su, Hao ;
Guibas, Leonidas J. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :918-927