The Projective Ensemble and Distribution of Points in Odd-Dimensional Spheres

被引:13
作者
Beltran, Carlos [1 ]
Etayo, Ujue [1 ]
机构
[1] Univ Cantabria, Dept Matemat Estadist & Comp, Fac Ciencias, Avd Los Castros S-N, E-39005 Santander, Spain
关键词
Determinantal point processes; Minimal Riesz energy; Minimal Green energy; MINIMAL DISCRETE ENERGY; ASYMPTOTIC-EXPANSION; RENORMALIZED ENERGY; RIESZ ENERGY;
D O I
10.1007/s00365-018-9426-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a determinantal point process on the complex projective space that reduces to the so-called spherical ensemble for complex dimension 1 under identification of the 2-sphere with the Riemann sphere. Through this determinantal point process, we propose a new point processs in odd-dimensional spheres that produces fairly well-distributed points, in the sense that the expected value of the Riesz 2-energy for these collections of points is smaller than all previously known bounds.
引用
收藏
页码:163 / 182
页数:20
相关论文
共 20 条
  • [1] The spherical ensemble and uniform distribution of points on the sphere
    Alishahi, Kasra
    Zamani, Mohammadsadegh
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 27
  • [2] Beltran C., ARXIV170200864MATHDG
  • [3] Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres
    Beltran, Carlos
    Marzo, Jordi
    Ortega-Cerda, Joaquim
    [J]. JOURNAL OF COMPLEXITY, 2016, 37 : 76 - 109
  • [4] Determinantal Point Processes and Fermions on Complex Manifolds: Large Deviations and Bosonization
    Berman, Robert J.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 1 - 47
  • [5] Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere
    Betermin, Laurent
    Sandier, Etienne
    [J]. CONSTRUCTIVE APPROXIMATION, 2018, 47 (01) : 39 - 74
  • [6] Borodachov S., MINIMAL DISCRETE ENE
  • [7] The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere
    Brauchart, J. S.
    Hardin, D. P.
    Saff, E. B.
    [J]. RECENT ADVANCES IN ORTHOGONAL POLYNOMIALS, SPECIAL FUNCTIONS, AND THEIR APPLICATIONS, 2011, 578 : 31 - +
  • [8] The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N
    Brauchart, J. S.
    Hardin, D. P.
    Saff, E. B.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 621 - 633
  • [9] About the second term of the asymptotics for optimal Riesz energy on the sphere in the potential-theoretical case
    Brauchart, Johann S.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (05) : 321 - 328
  • [10] Distributing many points on spheres: Minimal energy and designs
    Brauchart, Johann S.
    Grabner, Peter J.
    [J]. JOURNAL OF COMPLEXITY, 2015, 31 (03) : 293 - 326