A STABLE NUMERICAL SCHEME FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE

被引:8
作者
Mora, C. M. [1 ]
Mardones, H. A. [1 ]
Jimenez, J. C. [2 ]
Selva, M. [3 ]
Biscay, R. [4 ]
机构
[1] Univ Concepcion, Cl2MA, Fac Ciencias Fisi & Matemat, Dept Ingn Matemat, Casilla 160 C, Concepcion, Chile
[2] Inst Cibernet Matemat & Fis, Dept Matemat Interdisciplinaria, Havana, Cuba
[3] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Casilla 160 C, Concepcion, Chile
[4] Ctr Invest Matemat, Dept Probabilidad & Estadist, Guanajuato 36240, Mexico
关键词
stochastic differential equation; stable numerical scheme; weak error; mean-square convergence; rate of convergence; bilinear SDEs; unstable equilibrium point; locally Lipschitz SDEs; LOCAL LINEARIZATION SCHEME; BALANCED IMPLICIT METHODS; LINEAR-STABILITY ANALYSIS; EXPONENTIAL STABILITY; ASYMPTOTIC STABILITY; STRONG-CONVERGENCE; MARUYAMA METHOD; MEAN-SQUARE; S-ROCK; SYSTEMS;
D O I
10.1137/140984488
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new approach for designing numerical schemes for stochastic differential equations (SDEs). The approach, which we have called the direction and norm decomposition method, proposes to approximate the required solution X-t by integrating the system of coupled SDEs that describes the evolution of the norm of X-t and its projection on the unit sphere. This allows us to develop an explicit scheme for stiff SDEs with multiplicative noise that shows a solid performance in various numerical experiments. Under general conditions, the new integrator preserves the almost sure stability of the solutions for any step-size, as well as the property of being distant from 0. The scheme also has a linear rate of weak convergence for a general class of SDEs with locally Lipschitz coefficients, and one-half strong order of convergence.
引用
收藏
页码:1614 / 1649
页数:36
相关论文
共 69 条
[1]   WEAK SECOND ORDER EXPLICIT STABILIZED METHODS FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS [J].
Abdulle, Assyr ;
Vilmart, Gilles ;
Zygalakis, Konstantinos C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04) :A1792-A1814
[2]   S-ROCK: Chebyshev methods for stiff stochastic differential equations [J].
Abdulle, Assyr ;
Cirilli, Stephane .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) :997-1014
[3]  
Abdulle A, 2008, COMMUN MATH SCI, V6, P845
[4]   SPLITTING INTEGRATORS FOR THE STOCHASTIC LANDAU-LIFSHITZ EQUATION [J].
Ableidinger, M. ;
Buckwar, E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03) :A1788-A1806
[5]   A note on the Balanced method [J].
Alcock, Jamie ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2006, 46 (04) :689-710
[6]   Stable strong order 1.0 schemes for solving stochastic ordinary differential equations [J].
Alcock, Jamie ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2012, 52 (03) :539-557
[7]  
Anderson DF, 2011, COMMUN MATH SCI, V9, P301
[8]  
[Anonymous], 2007, STOCHASTIC DIFFERENT
[9]   Stabilization and destabilization of nonlinear differential equations by noise [J].
Appleby, John A. D. ;
Mao, Xuerong ;
Rodkina, Alexandra .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (03) :683-691
[10]  
Arnold L., 1998, Random Dynamical Systems