Atomistic configurational forces in crystalline fracture

被引:2
作者
Birang, O. S. Elmira [1 ]
Park, Harold S. [2 ]
Smith, Ana-Suncana [1 ]
Steinmann, Paul [3 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Interdisciplinary Ctr Nanostruct Films, PULS Grp, Erlangen, Germany
[2] Boston Univ, Dept Mech Engn, Boston, MA USA
[3] Friedrich Alexander Univ Erlangen Nurnberg, Inst Appl Mech, Erlangen, Germany
来源
FORCES IN MECHANICS | 2021年 / 4卷
关键词
Atomistic configurational mechanics; Configurational forces; Many-body potentials; Fracture mechanics; MATERIAL SETTINGS; MECHANICS; SIMULATION;
D O I
10.1016/j.finmec.2021.100044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Configurational atomistic forces contribute to the configurational mechanics (i.e. non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the initial atomic configuration. These forces drive energetically favorable irreversible reorganizations of the material body, and thus characterize the tendency of crystalline defects to propagate. In this work, we provide new expressions for the atomistic configurational forces for two realistic interatomic potentials, i.e. the embedded atom potential (EAM) for metals, and second generation reactive bond order (REBO-II) potential for hydrocarbons. We present a range of numerical examples involving quasistatic fracture for both FCC metals and mono and bi-layer graphene at zero Kelvin that demonstrate the ability to predict defect nucleation and evolution using the proposed atomistic configurational mechanics approach. Furthermore, we provide the contributions for each potential including two-body stretching, three-body mixed-mode stretchingbending, and four-body mixed-mode stretching-bending-twisting terms that make towards defect nucleation and propagation.
引用
收藏
页数:23
相关论文
共 43 条
[1]   Tension and twist of chiral nanotubes: torsional buckling, mechanical response and indicators of failure [J].
Aghaei, Amin ;
Dayal, Kaushik .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (08)
[2]   A review on mechanics and mechanical properties of 2D materials-Graphene and beyond [J].
Akinwande, Deji ;
Brennan, Christopher J. ;
Bunch, J. Scott ;
Egberts, Philip ;
Felts, Jonathan R. ;
Gao, Huajian ;
Huang, Rui ;
Kim, Joon-Seok ;
Li, Teng ;
Li, Yao ;
Liechti, Kenneth M. ;
Lu, Nanshu ;
Park, Harold S. ;
Reed, Evan J. ;
Wang, Peng ;
Yakobson, Boris I. ;
Zhang, Teng ;
Zhang, Yong-Wei ;
Zhou, Yao ;
Zhu, Yong .
EXTREME MECHANICS LETTERS, 2017, 13 :42-77
[3]  
Birang S.E., 2021, FORCES MECH, V2
[4]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[5]   Crack propagation in graphene [J].
Budarapu, P. R. ;
Javvaji, B. ;
Sutrakar, V. K. ;
Mahapatra, D. Roy ;
Zi, G. ;
Rabczuk, T. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (06)
[6]   Grain boundary energy function for fcc metals [J].
Bulatov, Vasily V. ;
Reed, Bryan W. ;
Kumar, Mukul .
ACTA MATERIALIA, 2014, 65 :161-175
[7]  
Chen MJ, 2006, CHINESE PHYS, V15, P2676, DOI 10.1088/1009-1963/15/11/036
[8]   Fracture toughness of Cu and Ni single crystals with a nanocrack [J].
Cui, Cheng Bin ;
Kim, Seon Do ;
Beom, Hyeon Gyu .
JOURNAL OF MATERIALS RESEARCH, 2015, 30 (12) :1957-1964
[9]   Nonlinear bending and stretching of a circular graphene sheet under a central point load [J].
Duan, W. H. ;
Wang, C. M. .
NANOTECHNOLOGY, 2009, 20 (07)
[10]   ELASTIC ENERGY-MOMENTUM TENSOR [J].
ESHELBY, JD .
JOURNAL OF ELASTICITY, 1975, 5 (3-4) :321-335