Deep learning algorithm predicts diabetic retinopathy progression in individual patients

被引:183
作者
Arcadu, Filippo [1 ,2 ]
Benmansour, Fethallah [1 ,2 ]
Maunz, Andreas [1 ,2 ]
Willis, Jeff [3 ,4 ]
Haskova, Zdenka [3 ,4 ]
Prunotto, Marco [2 ,5 ,6 ]
机构
[1] Roche, Roche Informat, Basel, Switzerland
[2] Roche, Roche Personalized Healthcare, Basel, Switzerland
[3] Genentech Inc, Clin Sci Ophthalmol, San Francisco, CA 94080 USA
[4] Genentech Inc, Roche Personalized Healthcare, San Francisco, CA 94080 USA
[5] Roche, Immunol Infect Dis & Ophthalmol, Basel, Switzerland
[6] Univ Geneva, Sch Pharmaceut Sci, Geneva, Switzerland
关键词
NEURAL-NETWORK; SEVERITY; CLASSIFICATION; VALIDATION; IMAGES; SYSTEM;
D O I
10.1038/s41746-019-0172-3
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The global burden of diabetic retinopathy (DR) continues to worsen and DR remains a leading cause of vision loss worldwide. Here, we describe an algorithm to predict DR progression by means of deep learning (DL), using as input color fundus photographs (CFPs) acquired at a single visit from a patient with DR. The proposed DL models were designed to predict future DR progression, defined as 2-step worsening on the Early Treatment Diabetic Retinopathy Diabetic Retinopathy Severity Scale, and were trained against DR severity scores assessed after 6, 12, and 24 months from the baseline visit by masked, well-trained, human reading center graders. The performance of one of these models (prediction at month 12) resulted in an area under the curve equal to 0.79. Interestingly, our results highlight the importance of the predictive signal located in the peripheral retinal fields, not routinely collected for DR assessments, and the importance of microvascular abnormalities. Our findings show the feasibility of predicting future DR progression by leveraging CFPs of a patient acquired at a single visit. Upon further development on larger and more diverse datasets, such an algorithm could enable early diagnosis and referral to a retina specialist for more frequent monitoring and even consideration of early intervention. Moreover, it could also improve patient recruitment for clinical trials targeting DR.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Comparison of Early Treatment Diabetic Retinopathy Study Standard 7-Field Imaging With Ultrawide-Field Imaging for Determining Severity of Diabetic Retinopathy [J].
Aiello, Lloyd Paul ;
Odia, Isoken ;
Glassman, Adam R. ;
Melia, Michele ;
Jampol, Lee M. ;
Bressler, Neil M. ;
Kiss, Szilard ;
Silva, Paolo S. ;
Wykoff, Charles C. ;
Sun, Jennifer K. ;
Beck, Roy W. ;
Auza, Daphne ;
Baptista, Alyssa ;
Beaulieu, Wesley T. ;
Constantine, Sharon R. ;
Dale, Brian B. ;
Dupre, Simone S. ;
Davis, Julie ;
Huggins, Meagan L. ;
Johnson, Paula A. ;
Kelly, Brittany ;
Liu, Danni ;
Loggins, Brenda L. ;
Maguire, Maureen ;
Nemeth, Ilona ;
Preston, Carrie ;
Stockdale, Cynthia R. ;
Stutz, Katie ;
Cavallerano, Jerry D. ;
Tolls, Dorothy ;
Martin, Daniel F. ;
Baker, Carl W. ;
Jhaveri, Chirag ;
MacCumber, Mathew ;
Antoszyk, Andrew ;
Bressler, Susan B. ;
Friedman, Scott ;
Kim, Judy ;
Scott, Ingrid U. ;
Wells, John A., III ;
Bhargava, Sangeeta ;
Schron, Eleanor ;
Everett, Donald F. ;
Miskala, Paivi H. ;
Antoszyk, Andrew N. ;
Blodi, Barbra ;
Davis, Matthew D. ;
Elman, Michael J. ;
Ferris, Frederick L., III ;
Jaffe, Glenn J. .
JAMA OPHTHALMOLOGY, 2019, 137 (01) :65-73
[2]  
[Anonymous], 1991, OPHTHALMOLOGY, V98, P823
[3]  
[Anonymous], 2016, CoRR abs/1512.00567, DOI DOI 10.1109/CVPR.2016.308
[4]   Deep Learning Predicts OCT Measures of Diabetic Macular Thickening From Color Fundus Photographs [J].
Arcadu, Filippo ;
Benmansour, Fethallah ;
Maunz, Andreas ;
Michon, John ;
Haskova, Zdenka ;
McClintock, Dana ;
Adamis, Anthony P. ;
Willis, Jeffrey R. ;
Prunotto, Marco .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (04) :852-857
[5]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[6]  
Brar M., 2016, EYENET MAGAZINE S, P1
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Long-term Outcomes of Ranibizumab Therapy for Diabetic Macular Edema: The 36-Month Results from Two Phase III Trials RISE and RIDE [J].
Brown, David M. ;
Quan Dong Nguyen ;
Marcus, Dennis M. ;
Boyer, David S. ;
Patel, Sunil ;
Feiner, Leonard ;
Schlottmann, Patricio G. ;
Rundle, Amy Chen ;
Zhang, Jiameng ;
Rubio, Roman G. ;
Adamis, Anthony P. ;
Ehrlich, Jason S. ;
Hopkins, J. Jill .
OPHTHALMOLOGY, 2013, 120 (10) :2013-2022
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+