Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies

被引:16
作者
Bodai, Zsolt [1 ]
Bishop, Alena L. [2 ]
Gantz, Valentino M. [2 ]
Komor, Alexis C. [1 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Div Biol Sci, Sect Cell & Dev Biol, La Jolla, CA 92093 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DNA-REPAIR; CRISPR-CAS9; CELLS; BASE; CRISPR/CAS9; INHIBITION; NUCLEASES; DESIGN;
D O I
10.1038/s41467-022-29989-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Programmable double-strand DNA breaks (DSBs) can be harnessed for precision genome editing through manipulation of the homology-directed repair (HDR) pathway. However, end-joining repair pathways often outcompete HDR and introduce insertions and deletions of bases (indels) at the DSB site, decreasing precision outcomes. It has been shown that indel sequences for a given DSB site are reproducible and can even be predicted. Here, we report a general strategy (the "double tap" method) to improve HDR-mediated precision genome editing efficiencies that takes advantage of the reproducible nature of indel sequences. The method simply involves the use of multiple gRNAs: a primary gRNA that targets the wild-type genomic sequence, and one or more secondary gRNAs that target the most common indel sequence(s), which in effect provides a "second chance" at HDR-mediated editing. This proof-of-principle study presents the double tap method as a simple yet effective option for enhancing precision editing in mammalian cells. Programmable double-strand DNA breaks (DSBs) can be harnessed for precision genome editing through manipulation of the homology-directed repair (HDR) pathway. Here the authors report the development of the double tap - double tap implements secondary gRNAs which target Cas9 to common indel sequences and provides a second chance at HDR.
引用
收藏
页数:15
相关论文
共 55 条
[1]   Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting [J].
Aguirre, Andrew J. ;
Meyers, Robin M. ;
Weir, Barbara A. ;
Vazquez, Francisca ;
Zhang, Cheng-Zhong ;
Ben-David, Uri ;
Cook, April ;
Ha, Gavin ;
Harrington, William F. ;
Doshi, Mihir B. ;
Kost-Alimova, Maria ;
Gill, Stanley ;
Xu, Han ;
Ali, Levi D. ;
Jiang, Guozhi ;
Pantel, Sasha ;
Lee, Yenarae ;
Goodale, Amy ;
Cherniack, Andrew D. ;
Oh, Coyin ;
Kryukov, Gregory ;
Cowley, Glenn S. ;
Garraway, Levi A. ;
Stegmaier, Kimberly ;
Roberts, Charles W. ;
Golub, Todd R. ;
Meyerson, Matthew ;
Root, David E. ;
Tsherniak, Aviad ;
Hahn, William C. .
CANCER DISCOVERY, 2016, 6 (08) :914-929
[2]   Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template [J].
Aird, Eric J. ;
Lovendahl, Klaus N. ;
St Martin, Amber ;
Harris, Reuben S. ;
Gordon, Wendy R. .
COMMUNICATIONS BIOLOGY, 2018, 1
[3]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[4]   Microhomology-based choice of Cas9 nuclease target sites [J].
Bae, Sangsu ;
Kweon, Jiyeon ;
Kim, Heon Seok ;
Kim, Jin-Soo .
NATURE METHODS, 2014, 11 (07) :705-706
[5]   Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases [J].
Bae, Sangsu ;
Park, Jeongbin ;
Kim, Jin-Soo .
BIOINFORMATICS, 2014, 30 (10) :1473-1475
[6]  
Bishop A. L, 2022, NAT COMMUN, DOI [10.1038/s41467-022-29868-3, DOI 10.1038/S41467-022-29868-3]
[7]   USER™ friendly DNA engineering and cloning method by uracil excision [J].
Bitinaite, Jurate ;
Rubino, Michelle ;
Varma, Kamini Hingorani ;
Schildkraut, Ira ;
Vaisvila, Romualdas ;
Vaiskunaite, Rita .
NUCLEIC ACIDS RESEARCH, 2007, 35 (06) :1992-2002
[8]   Analysis of the cytogenetic stability of the human embryonal kidney cell line 293 by cytogenetic and STR profiling approaches [J].
Bylund, L ;
Kytölä, S ;
Lui, WO ;
Larsson, C ;
Weber, G .
CYTOGENETIC AND GENOME RESEARCH, 2004, 106 (01) :28-32
[9]   Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency [J].
Canny, Marella D. ;
Moatti, Nathalie ;
Wan, Leo C. K. ;
Fradet-Turcotte, Amelie ;
Krasner, Danielle ;
Mateos-Gomez, Pedro A. ;
Zimmermann, Michal ;
Orthwein, Alexandre ;
Juang, Yu-Chi ;
Zhang, Wei ;
Noordermeer, Sylvie M. ;
Seclen, Eduardo ;
Wilson, Marcus D. ;
Vorobyov, Andrew ;
Munro, Meagan ;
Ernst, Andreas ;
Timothy F Ng ;
Cho, Tiffany ;
Cannon, Paula M. ;
Sidhu, Sachdev S. ;
Sicheri, Frank ;
Durocher, Daniel .
NATURE BIOTECHNOLOGY, 2018, 36 (01) :95-+
[10]   A highly specific SpCas9 variant is identified by in vivo screening in yeast [J].
Casini, Antonio ;
Olivieri, Michele ;
Petris, Gianluca ;
Montagna, Claudia ;
Reginato, Giordano ;
Maule, Giulia ;
Lorenzin, Francesca ;
Prandi, Davide ;
Romanel, Alessandro ;
Demichelis, Francesca ;
Inga, Alberto ;
Cereseto, Anna .
NATURE BIOTECHNOLOGY, 2018, 36 (03) :265-+