Kemer's theory for H-module algebras with application to the PI exponent

被引:24
作者
Karasik, Yaakov [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Graded algebra; Polynomial identity; Hopf algebra; Exponent;
D O I
10.1016/j.jalgebra.2016.02.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a semisimple finite dimensional Hopf algebra over a field F of zero characteristic. We prove three major theorems. 1. The Representability theorem which states that every H-module (associative) F-algebra W satisfying an ordinary PI, has the same H-identities as the Grassmann envelope of an H circle times(FZ/2Z)*-module algebra which is finite dimensional over a field extension of F. 2. The Specht problem for H-module (ordinary) PI algebras. That is, every H T-ideal Gamma which contains an ordinary PI contains H-polynomials f(1),. . .,f(s) which generate Gamma as an H T-ideal. 3. Amitsur's conjecture for H-module algebras, saying that the exponent of the H-codimension sequence of an ordinary PI H-module algebra is an integer. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:194 / 227
页数:34
相关论文
共 19 条
[1]   Kemer's theorem for affine PI algebras over a field of characteristic zero [J].
Aljadeff, Eli ;
Kanel-Belov, Alexei ;
Karasik, Yaakov .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (08) :2771-2808
[2]   Representability and Specht problem for G-graded algebras [J].
Aljadeff, Eli ;
Kanel-Belov, Alexei .
ADVANCES IN MATHEMATICS, 2010, 225 (05) :2391-2428
[3]   SPECHT'S PROBLEM FOR ASSOCIATIVE AFFINE ALGEBRAS OVER COMMUTATIVE NOETHERIAN RINGS [J].
Belov-Kanel, Alexei ;
Rowen, Louis ;
Vishne, Uzi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (08) :5553-5596
[4]   P.i algebras with Hopf algebra actions [J].
Berele, A ;
Bergen, J .
JOURNAL OF ALGEBRA, 1999, 214 (02) :636-651
[5]  
COHEN IS, 1946, T AM MATH SOC, V59, P54
[6]   On fusion categories [J].
Etingof, P ;
Nikshych, D ;
Ostrik, V .
ANNALS OF MATHEMATICS, 2005, 162 (02) :581-642
[7]  
Giambruno A, 2005, MATH SURVEYS MONOGRA
[8]   Amitsur's conjecture for associative algebras with a generalized Hopf action [J].
Gordienko, A. S. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (08) :1395-1411
[9]  
Karasik Yaakov, 2016, COMPUTATIONAL ASPECT, VI
[10]  
Kemer A.R., 1984, IZV AKAD NAUK SSSR M, V48, P1042