Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration

被引:49
作者
Zha, Kangkang [1 ,2 ,3 ,4 ]
Sun, Zhiqiang [1 ,2 ,3 ,4 ]
Yang, Yu [5 ]
Chen, Mingxue [6 ]
Gao, Cangjiang [1 ,2 ,3 ,4 ]
Fu, Liwei [1 ,2 ,3 ,4 ]
Li, Hao [1 ,2 ,3 ,4 ]
Sui, Xiang [2 ,3 ]
Guo, Quanyi [2 ,3 ]
Liu, Shuyun [2 ,3 ]
机构
[1] Med Sch Chinese PLA, Beijing, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Inst Orthopaed, 28 Fuxing Rd, Beijing, Peoples R China
[3] PLA, Key Lab Musculoskeletal Trauma & War Injuries, Beijing Key Lab Regenerat Med Orthopaed, 28 Fuxing Rd, Beijing, Peoples R China
[4] Nankai Univ, Sch Med, Tianjin, Peoples R China
[5] Second Peoples Hosp Guiyang, Guiyang, Guizhou, Peoples R China
[6] Peking Univ, Clin Coll 4, Beijing Jishuitan Hosp, Dept Orthopaed Surg, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1155/2021/8830834
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
引用
收藏
页数:15
相关论文
共 142 条
[1]   Enhanced Chondrocyte Proliferation and Mesenchymal Stromal Cells Chondrogenesis in Coculture Pellets Mediate Improved Cartilage Formation [J].
Acharya, Chitrangada ;
Adesida, Adetola ;
Zajac, Paul ;
Mumme, Marcus ;
Riesle, Jens ;
Martin, Ivan ;
Barbero, Andrea .
JOURNAL OF CELLULAR PHYSIOLOGY, 2012, 227 (01) :88-97
[2]   A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis [J].
Ahmed, Maqsood ;
da Silva Ramos, Tiago Andre ;
Damanik, Febriyani ;
Bach Quang Le ;
Wieringa, Paul ;
Bennink, Martin ;
van Blitterswijk, Clemens ;
de Boer, Jan ;
Moroni, Lorenzo .
SCIENTIFIC REPORTS, 2015, 5
[3]   The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading [J].
Aisenbrey, Elizabeth A. ;
Bryant, Stephanie J. .
BIOMATERIALS, 2019, 190 :51-62
[4]   Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties [J].
Andrzejewska, Anastazja ;
Catar, Rusan ;
Schoon, Janosch ;
Qazi, Taimoor Hasan ;
Sass, Frauke Andrea ;
Jacobi, Dorit ;
Blankenstein, Antje ;
Reinke, Simon ;
Krueger, David ;
Streitz, Mathias ;
Schlickeiser, Stephan ;
Richter, Sarina ;
Souidi, Naima ;
Beez, Christien ;
Kamhieh-Milz, Julian ;
Krueger, Ulrike ;
Zemojtel, Tomasz ;
Juerchott, Karsten ;
Strunk, Dirk ;
Reinke, Petra ;
Duda, Georg ;
Moll, Guido ;
Geissler, Sven .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[5]   Chondrogenic Potential of Subpopulations of Cells Expressing Mesenchymal Stem Cell Markers Derived From Human Synovial Membranes [J].
Arufe, M. C. ;
De la Fuente, A. ;
Fuentes, I. ;
de Toro, F. J. ;
Blanco, F. J. .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2010, 111 (04) :834-845
[6]  
Bidarra SJ, 2019, METHODS MOL BIOL, V2002, P165, DOI 10.1007/7651_2018_185
[7]   Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production [J].
Camilleri, Emily T. ;
Gustafson, Michael P. ;
Dudakovic, Amel ;
Riester, Scott M. ;
Garces, Catalina Galeano ;
Paradise, Christopher R. ;
Takai, Hideki ;
Karperien, Marcel ;
Cool, Simon ;
Sampen, Hee-Jeong Im ;
Larson, A. Noelle ;
Qu, Wenchun ;
Smith, Jay ;
Dietz, Allan B. ;
van Wijnen, Andre J. .
STEM CELL RESEARCH & THERAPY, 2016, 7 :1-16
[8]   Dynamic mechanical loading facilitated chondrogenic differentiation of rabbit BMSCs in collagen scaffolds [J].
Cao, Wanxu ;
Lin, Weimin ;
Cai, Hanxu ;
Chen, Yafang ;
Man, Yi ;
Liang, Jie ;
Wang, Qiguang ;
Sun, Yong ;
Fan, Yujiang ;
Zhang, Xingdong .
REGENERATIVE BIOMATERIALS, 2019, 6 (02) :99-106
[9]   Autologous Chondrocyte Implantation as Treatment for Unsalvageable Osteochondritis Dissecans: 10-to 25-Year Follow-up [J].
Carey, James L. ;
Shea, Kevin G. ;
Lindahl, Anders ;
Vasiliadis, Haris S. ;
Lindahl, Carl ;
Peterson, Lars .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2020, 48 (05) :1134-1140
[10]   Bone Marrow Mesenchymal Stromal Cell Treatment in Patients with Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation [J].
Chahal, Jaskarndip ;
Gomez-Aristizabal, Alejandro ;
Shestopaloff, Konstantin ;
Bhatt, Shashank ;
Chaboureau, Amelie ;
Fazio, Antonietia ;
Chisholm, Jolene ;
Weston, Amanda ;
Chiovitti, Julia ;
Keating, Armand ;
Kapoor, Mohit ;
Ogilvie-Harris, Darrell J. ;
Syed, Khalid A. ;
Gandhi, Rajiv ;
Mahomed, Nizar N. ;
Marshall, Kenneth W. ;
Sussman, Marshall S. ;
Naraghi, Ali M. ;
Viswanathan, Sowmya .
STEM CELLS TRANSLATIONAL MEDICINE, 2019, 8 (08) :746-757