Compact and noncompact structures in a class of nonlinearly dispersive equations

被引:20
作者
Wazwaz, AM [1 ]
Taha, T
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
[2] Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA
关键词
compactons; solitons; nonlinear dispersion; solitary patterns;
D O I
10.1016/S0378-4754(02)00175-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we study compact and noncompact dispersive structures formed by a class of nonlinear dispersive equations. We show that the focusing branches provide compactons solutions: solitons with compact support. We also show that the defocusing branches generate solitary patterns solutions. We test our work for a variety of nonlinear equations with positive and negative exponents. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 189
页数:19
相关论文
共 23 条
[1]  
Adomian Adomian G. G., Solving Frontier Problems in Physics. The Decomposition Method
[3]  
[Anonymous], SOLITONS FRACTALS
[4]   Particle methods for dispersive equations [J].
Chertock, A ;
Levy, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (02) :708-730
[5]   Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations [J].
Cooper, F ;
Hyman, JM ;
Khare, A .
PHYSICAL REVIEW E, 2001, 64 (02) :13
[6]   Breather compactons in nonlinear Klein-Gordon systems [J].
Dinda, PT ;
Remoissenet, M .
PHYSICAL REVIEW E, 1999, 60 (05) :6218-6221
[7]   From kinks to compactonlike kinks [J].
Dusuel, S ;
Michaux, P ;
Remoissenet, M .
PHYSICAL REVIEW E, 1998, 57 (02) :2320-2326
[8]   A numerical study of compactons [J].
Ismail, MS ;
Taha, TR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (06) :519-530
[9]  
KIVSHAR Y, 1994, PHYS BIOL, V329, P255
[10]   Patterns on liquid surfaces: cnoidal waves, compactons and scaling [J].
Ludu, A ;
Draayer, JP .
PHYSICA D, 1998, 123 (1-4) :82-91