Nuclear 57Fe relaxation in Fe2+-containing NiFe2O4 and CoFe2O4 single crystals

被引:1
|
作者
Zalesskii, AV [1 ]
Gubkin, MK [1 ]
Perekalina, TM [1 ]
Khimich, TA [1 ]
机构
[1] Russian Acad Sci, AV Shubnikov Crystallog Inst, Moscow 117333, Russia
基金
俄罗斯基础研究基金会;
关键词
Activation Energy; Ferrite; Relaxation Time; Relaxation Process; Relaxation Rate;
D O I
10.1134/1.1306583
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Spin-lattice (T-1) and spin-spin (T-2) relaxation times of Fe-57 nuclei in the single-crystal NiFe2O4 and CoFe2O4 ferrites containing Fe2+ ions have been studied in the temperature range of 4.2-100 K by a spin-echo technique. The peaks of relaxation rates T-1(-1) and T-2(-1) caused by the presence of Fe2+ ions were observed for both ferrites in the ranges 38-42 and 28-32 K, respectively. The analysis of the results obtained with invocation of the data on ferromagnetic resonance and the measurements of the temperature dependence of resistivity shows that the mechanism of nuclear relaxation responsible for "impurity" peaks T-1(-1) and T-2(-1) is a slow relaxation process caused by electron exchange Fe2+ <-> Fe3+, characterized by a low activation energy. (C) 2000 MAIK "Nauka/Interperiodica".
引用
收藏
页码:678 / 681
页数:4
相关论文
共 50 条
  • [21] 2D Nanostructures of CoFe2O4 and NiFe2O4: Efficient Oxygen Evolution Catalyst
    Mahala, Chavi
    Sharma, Mamta Devi
    Basu, Mrinmoyee
    ELECTROCHIMICA ACTA, 2018, 273 : 462 - 473
  • [22] 57Fe Mossbauer spectroscopy investigation of NiFe2O4 and MnFe2O4 ferrite nanoparticles prepared by thermal treatment method
    Mahshid Chireh
    Mahmoud Naseri
    Ahmad Kamalianfar
    Applied Physics A, 2020, 126
  • [23] Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles
    Polishchuk, Dmytro
    Nedelko, Natalia
    Solopan, Sergii
    Slawska-Waniewska, Anna
    Zamorskyi, Vladyslav
    Tovstolytkin, Alexandr
    Belous, Anatolii
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [24] Improvement of the magnetization and heating ability of CoFe2O4/NiFe2O4 core/shell nanostructures
    Zonkol, Maram G.
    Faramawy, A. M.
    Allam, Nageh K.
    El-Sayed, H. M.
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [25] Employing Calcination as a Facile Strategy to Reduce the Cytotoxicity in CoFe2O4 and NiFe2O4 Nanoparticles
    Lima, Debora R.
    Jiang, Ning
    Liu, Xin
    Wang, Jiale
    Vulcani, Valcinir A. S.
    Martins, Alessandro
    Machado, Douglas S.
    Landers, Richard
    Camargo, Pedro H. C.
    Pancotti, Alexandre
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (45) : 39830 - 39838
  • [26] Green Synthesis of Magnetic Ferrites (Fe3O4, CoFe2O4, and NiFe2O4) Stabilized by Aloe Vera Extract for Cancer Hyperthermia Activities
    Hermosa, Glemarie C.
    Liao, Chien-Shiun
    Wu, Ho-Shing
    Wang, Sea-Fue
    Liu, Ting-Yu
    Jeng, Kuo-Shyang
    Lin, Shu-Sheng
    Chang, Chiung-Fang
    Sun, An-Cheng Aidan
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (08)
  • [27] Magnetocapacitance in Fe3O4 and NiFe2O4 nanoparticles
    Yanez-Vilar, S.
    Sanchez-Andujar, M.
    Castro-Garcia, S.
    Mira, J.
    Rivas, J.
    Senaris-Rodriguez, M. A.
    BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2010, 49 (01): : 81 - 88
  • [28] Catalytic Activity of Ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the Thermal Decomposition of Ammonium Perchlorate
    Zhang, Ming
    Zhao, Fengqi
    Yang, Yanjing
    An, Ting
    Qu, Wengang
    Li, Hui
    Zhang, Jiankan
    Li, Na
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2020, 45 (03) : 463 - 471
  • [29] Structural, microstructural and magnetic properties of NiFe2O4, CoFe2O4 and MnFe2O4 nanoferrite thin films
    Verma, Kuldeep Chand
    Singh, Virender Pratap
    Ram, Mast
    Shah, Jyoti
    Kotnala, R. K.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (24) : 3271 - 3275
  • [30] 57Fe Mossbauer study of NiFe2O4 nanoparticles produced by the levitation-jet aerosol technique
    Bogart, Lara K.
    Morozov, Iurii G.
    Parkin, Ivan P.
    Kuznetcov, Maksim V.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (16) : 14347 - 14352