Radial graphs of constant mean curvature and doubly connected minimal surfaces with prescribed boundary

被引:9
作者
Fusieger, P
Ripoll, J
机构
[1] Univ Fed Santa Maria, Dept Matemat, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Fed Rio Grande Sul, Inst Matemat, BR-9150970 Porto Alegre, RS, Brazil
关键词
radial graphs; constant mean curvature; Dirichlet Problem;
D O I
10.1023/A:1023084817254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate existence and uniqueness of radial graphs of constant mean curvature (cmc) with prescribed boundary. Our main result establishes the existence of a minimal radial anullus spanning two given convex curves in parallel planes of R-3; we also obtain a variant of a well-known result of James Serrin about the existence of radial cmc graphs over convex domains in the sphere.
引用
收藏
页码:373 / 400
页数:28
相关论文
共 15 条
[1]  
[Anonymous], SURVEY MINIMAL SURFA
[2]  
[Anonymous], 1932, ACTA LITT SCI
[3]  
DOUGLAS J, 1932, P AM MATH SOC, V18, P315
[4]  
Espirito-Santo N, 2001, J GEOM ANAL, V11, P601
[5]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF
[6]   ON BOUNDED SLOPE CONDITION [J].
HARTMAN, P .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 18 (03) :495-&
[7]  
LOPEZ R, IN PRESS MANUSCRIPTA
[8]   MINIMAL-SURFACES BOUNDED BY CONVEX CURVES IN PARALLEL PLANES [J].
MEEKS, WH ;
WHITE, B .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (02) :263-278
[9]  
Riemann B., 1898, OEUVRES MATH RIEMANN
[10]   Some existence results and gradient estimates of solutions of the Dirichlet problem for the constant mean curvature equation in convex domains [J].
Ripoll, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (01) :230-241