A SEIFERT-VAN KAMPEN THEOREM IN NON-ABELIAN ALGEBRA

被引:1
作者
Duckerts-Antoine, Mathieu [1 ]
Van Der Linden, Tim [2 ]
机构
[1] Univ Coimbra, Dept Matemat, Apartado 3008, P-3001501 Coimbra, Portugal
[2] Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2 Bte L7-01-02, B-1348 Louvain La Neuve, Belgium
关键词
derived functor; fundamental group; homology coproduct theorem; categorical Galois theory; algebraically coherent semi-abelian category; GALOIS THEORY; HOPF FORMULAS; HOMOLOGY; CATEGORIES; FACTORIZATION; EXTENSIONS; FIBRATION; HOMOTOPY;
D O I
10.4310/HHA.2018.v20.n2.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a variation on the Seifert-van Kampen theorem in a setting of non-abelian categorical algebra, providing sufficient conditions on a functor F, from an algebraically coherent semi-abelian category with enough projectives to an almost abelian (= Raikov semiabelian) category, for the preservation of pushouts of split monomorphisms by the left derived functor of F.
引用
收藏
页码:79 / 103
页数:25
相关论文
共 75 条
  • [1] [Anonymous], 2003, Reprints in Theory and Applications of Categories
  • [2] Barr M., 1969, Sem. on Triples and Categorical Homology Theory (ETH, Zurich, P245, DOI DOI 10.1007/BFB0083087
  • [3] Barr M., 1971, LECT NOTES MATH, V236, P1, DOI DOI 10.1007/BFB0058580
  • [4] BARR M, 1965, P C CAT ALG JOLL 196, P336
  • [5] Bernstein I., 1965, T AM MATH SOC, V115, P257
  • [6] BORCEUX F, 2001, CAMBRIDGE STUD ADV M, V72
  • [7] Borceux F., 2004, Math. Appl., V566
  • [8] BORCEUX F., 1994, HDB CATEGORICAL ALGE, V51
  • [9] Protolocalisations of homological categories
    Borceux, Francis
    Clementino, Maria Manuel
    Gran, Marino
    Sousa, Lurdes
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (08) : 1898 - 1927
  • [10] Mal'cev categories and fibration of pointed objects
    Bourn, D
    [J]. APPLIED CATEGORICAL STRUCTURES, 1996, 4 (2-3) : 307 - 327