Limit Cycles for a Discontinuous Quintic Polynomial Differential System

被引:5
作者
Huang, Bo [1 ,2 ]
机构
[1] Beihang Univ, LMIB Sch Math & Syst Sci, Beijing 100191, Peoples R China
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Averaging method; Center; Discontinuous quintic system; Limit cycle; Period annulus; 34C05; 34C07; AVERAGING THEORY; 16TH PROBLEM; NUMBER; PERTURBATIONS; BIFURCATIONS;
D O I
10.1007/s12346-018-00312-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the maximum number of limit cycles for a discontinuous quintic differential system. Using the first-order averaging method, we explain how limit cycles can bifurcate from the period annulus around the center of the considered system when it is perturbed inside a class of discontinuous quintic polynomial differential systems. Our results show that the lower bound and the upper bound of the number of limit cycles, 8 and 10 respectively, that can bifurcate from the period annulus around the center.
引用
收藏
页码:769 / 792
页数:24
相关论文
共 25 条
[1]  
Binyamini G, 2010, INVENT MATH, V181, P227, DOI 10.1007/s00222-010-0244-0
[2]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[3]   On the number of limit cycles for a class of discontinuous quadratic differential systems [J].
Cen, Xiuli ;
Li, Shimin ;
Zhao, Yulin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :314-342
[4]   A unified proof on the weak Hilbert 16th problem for n=2 [J].
Chen, F ;
Li, CZ ;
Llibre, J ;
Zhang, ZH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) :309-342
[5]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[6]   New lower bound for the Hilbert number in piecewise quadratic differential systems [J].
da Cruz, Leonardo P. C. ;
Novaes, Douglas D. ;
Torregrosa, Joan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (07) :4170-4203
[7]   On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line [J].
Euzebio, Rodrigo D. ;
Llibre, Jaume .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) :475-486
[8]   PERTURBATIONS OF QUADRATIC CENTERS OF GENUS ONE [J].
Gautier, Sebastien ;
Gavrilov, Lubomir ;
Iliev, Iliya D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (02) :511-535
[9]   The infinitesimal 16th Hilbert problem in the quadratic case [J].
Gavrilov, L .
INVENTIONES MATHEMATICAE, 2001, 143 (03) :449-497
[10]   Quadratic perturbations of quadratic codimension-four centers [J].
Gavrilov, Lubomir ;
Iliev, Iliya D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :69-76