Limit Cycles for a Discontinuous Quintic Polynomial Differential System

被引:4
作者
Huang, Bo [1 ,2 ]
机构
[1] Beihang Univ, LMIB Sch Math & Syst Sci, Beijing 100191, Peoples R China
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Averaging method; Center; Discontinuous quintic system; Limit cycle; Period annulus; 34C05; 34C07; AVERAGING THEORY; 16TH PROBLEM; NUMBER; PERTURBATIONS; BIFURCATIONS;
D O I
10.1007/s12346-018-00312-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the maximum number of limit cycles for a discontinuous quintic differential system. Using the first-order averaging method, we explain how limit cycles can bifurcate from the period annulus around the center of the considered system when it is perturbed inside a class of discontinuous quintic polynomial differential systems. Our results show that the lower bound and the upper bound of the number of limit cycles, 8 and 10 respectively, that can bifurcate from the period annulus around the center.
引用
收藏
页码:769 / 792
页数:24
相关论文
共 25 条
  • [1] Binyamini G, 2010, INVENT MATH, V181, P227, DOI 10.1007/s00222-010-0244-0
  • [2] Averaging methods for finding periodic orbits via Brouwer degree
    Buica, A
    Llibre, J
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01): : 7 - 22
  • [3] On the number of limit cycles for a class of discontinuous quadratic differential systems
    Cen, Xiuli
    Li, Shimin
    Zhao, Yulin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 314 - 342
  • [4] A unified proof on the weak Hilbert 16th problem for n=2
    Chen, F
    Li, CZ
    Llibre, J
    Zhang, ZH
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) : 309 - 342
  • [5] Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
  • [6] New lower bound for the Hilbert number in piecewise quadratic differential systems
    da Cruz, Leonardo P. C.
    Novaes, Douglas D.
    Torregrosa, Joan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (07) : 4170 - 4203
  • [7] On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line
    Euzebio, Rodrigo D.
    Llibre, Jaume
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 475 - 486
  • [8] PERTURBATIONS OF QUADRATIC CENTERS OF GENUS ONE
    Gautier, Sebastien
    Gavrilov, Lubomir
    Iliev, Iliya D.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (02) : 511 - 535
  • [9] The infinitesimal 16th Hilbert problem in the quadratic case
    Gavrilov, L
    [J]. INVENTIONES MATHEMATICAE, 2001, 143 (03) : 449 - 497
  • [10] Quadratic perturbations of quadratic codimension-four centers
    Gavrilov, Lubomir
    Iliev, Iliya D.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 69 - 76