Solvothermal synthesis high lithium ionic conductivity of Gd-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

被引:9
作者
Fan, Mingxia [1 ]
Deng, Xiangyu [1 ]
Zheng, Anqiao [1 ]
Yuan, Songdong [1 ]
机构
[1] Hubei Univ Technol, Hubei Collaborat Innovat Ctr High Efficiency Util, Wuhan 430068, Peoples R China
关键词
Solid electrolyte; Li1.3Al0.3Ti1.7(PO4)(3); solvothermal method; Gd doping; ionic conductivity; BATTERY; PERFORMANCE;
D O I
10.1142/S1793604721400026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
NASICON-type Li1.3Al0.3Ti1.7(PO4)(3) (LATP) solid electrolytes have been widely studied because of its stability in the air, low material price and high ionic conductivity. Gd-doped Li1.3Al0.3-xGdxTi1.7(PO4)(3) (x= 0, 0.025, 0.05, 0.075 and 0.1) with high ionic conductivity was successfully synthesized by solvothermal method for the first time in this work. The effect of Gd doping content on the structure and electrochemical performance of solid electrolytes was systematically studied. The optimal doping content of Gd is x= 0.075. With the Gd doping content of 0.075, the solid electrolyte has the highest ionic conductivity of 4.23 x 10(-4) S cm(-1) at room temperature, the lowest activation energy of 0.247 eV and the highest relative density of 94.89%. This is because the fact that when x= 0.075, it is the maximum content of Gd3+ to replace Al3+ and can completely enter the lattice of LATP, and does not emerge too much non-lithium ion conductive GdPO4 phase.
引用
收藏
页数:4
相关论文
共 29 条
[1]   IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) :590-591
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Enhanced ionic conductivity in Ce0.8Sm0.2O1.9:: Unique effect of calcium co-doping [J].
Banerjee, Suparna ;
Devi, Parukuttyamma Sujatha ;
Topwal, Dinesh ;
Mandal, Suman ;
Menon, Krishnakumar .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (15) :2847-2854
[4]  
Dharmesh H, 2016, PHYSICA B, V501, P90
[5]   Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry [J].
Duluard, Sandrine ;
Paillassa, Aude ;
Puech, Laurent ;
Vinatier, Philippe ;
Turq, Viviane ;
Rozier, Patrick ;
Lenormand, Pascal ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Ansart, Florence .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) :1145-1153
[6]   NASICON LiM2(PO4)3 electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance [J].
El-Shinawi, Hany ;
Regoutz, Anna ;
Payne, David J. ;
Cussen, Edmund J. ;
Corr, Serena A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (13) :5296-5303
[7]   Spoof Plasmonics: From Metamaterial Concept to Topological Description [J].
Gao, Zhen ;
Wu, Lin ;
Gao, Fei ;
Luo, Yu ;
Zhang, Baile .
ADVANCED MATERIALS, 2018, 30 (31)
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]   Evolution of microstructure and its relation to ionic conductivity in Li1+xAlxTi2-x(PO4)3 [J].
Hupfer, Thomas ;
Bucharsky, Ethel C. ;
Schell, Karl G. ;
Senyshyn, Anatoliy ;
Monchak, Mykhailo ;
Hoffmann, Michael J. ;
Ehrenberg, Helmut .
SOLID STATE IONICS, 2016, 288 :235-239
[10]   Solution-Based Synthesis and Characterization of Lithium-Ion Conducting Phosphate Ceramics for Lithium Metal Batteries [J].
Key, Baris ;
Schroeder, David J. ;
Ingram, Brian J. ;
Vaughey, John T. .
CHEMISTRY OF MATERIALS, 2012, 24 (02) :287-293