The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions

被引:104
作者
Cao, TB [1 ]
Saier, MH [1 ]
机构
[1] Univ Calif San Diego, Div Biol, La Jolla, CA 92093 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2003年 / 1609卷 / 01期
关键词
protein secretion; membrane insertion; general secretory pathway; SecYEG; SRP; FtsY; Ffh;
D O I
10.1016/S0005-2736(02)00662-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have identified all homologues in the current databases of the ubiquitous protein constituents of the general secretory (Sec) pathway. These prokaryotic/eukaryotic proteins include (1) SecY/Sec61alpha, (2) SecE/Sec61gamma, (3) SecG/Sec61beta, (4) Ffh/SRP54 and (5) FtsY/SRP receptor subunit-alpha. Phylogenetic and sequence analyses lead to major conclusions concerning (1) the ubiquity of these proteins in living organisms, (2) the topological uniformity of some but not other Sec constituents, (3) the orthologous nature of almost all of them, (4) a total lack of paralogues in almost all organisms for which complete genome sequences are available, (5) the occurrence of two or even three paralogues in a few bacteria, plants, and yeast, depending on the Sec constituent, and (6) a tremendous degree of sequence divergence in bacteria compared with that in archaea or eukaryotes. The phylogenetic analyses lead to the conclusion that with a few possible exceptions, the five families of Sec constituents analyzed generally underwent sequence divergence in parallel but at different characteristic rates. The results provide evolutionary insights as well as guides for future functional studies. Because every organism with a fully sequenced genome exhibits at least one orthologue of each of these Sec proteins, we conclude that all living organisms have relied on the Sec system as their primary protein secretory/membrane insertion system. Because most prokaryotes and many eukaryotes encode within their genomes only one of each constituent, we also conclude that strong evolutionary pressure has minimized gene duplication events leading to the establishment of Sec paralogues. Finally, the sequence diversity of bacterial proteins as compared with their archaeal and eukaryotic counterparts is in agreement with the suggestion that bacteria were the evolutionary predecessors of archaea and eukaryotes. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 125
页数:11
相关论文
共 64 条
[1]   TOPOLOGY ANALYSIS OF THE SECY PROTEIN, AN INTEGRAL MEMBRANE-PROTEIN INVOLVED IN PROTEIN EXPORT IN ESCHERICHIA-COLI [J].
AKIYAMA, Y ;
ITO, K .
EMBO JOURNAL, 1987, 6 (11) :3465-3470
[2]   Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor [J].
Beck, K ;
Wu, LF ;
Brunner, J ;
Müller, M .
EMBO JOURNAL, 2000, 19 (01) :134-143
[3]   An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets [J].
Bensing, BA ;
Sullam, PM .
MOLECULAR MICROBIOLOGY, 2002, 44 (04) :1081-1094
[4]   The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure [J].
Bessonneau, P ;
Besson, V ;
Collinson, I ;
Duong, F .
EMBO JOURNAL, 2002, 21 (05) :995-1003
[5]   SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins [J].
Bolhuis, A ;
Broekhuizen, CP ;
Sorokin, A ;
van Roosmalen, ML ;
Venema, G ;
Bron, S ;
Quax, WJ ;
van Dijl, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (33) :21217-21224
[6]   Three-dimensional structure of the bacterial protein-translocation complex SecYEG [J].
Breyton, C ;
Haase, W ;
Rapoport, TA ;
Kühlbrandt, W ;
Collinson, I .
NATURE, 2002, 418 (6898) :662-665
[7]   Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions [J].
Cao, TB ;
Saier, MH .
MICROBIOLOGY-SGM, 2001, 147 :3201-3214
[8]   Roles of the C-terminal end of SecY in protein translocation and viability of Escherichia coli [J].
Chiba, K ;
Mori, H ;
Ito, K .
JOURNAL OF BACTERIOLOGY, 2002, 184 (08) :2243-2250
[9]   Size comparisons among integral membrane transport protein homologues in Bacteria, Archaea, and Eucarya [J].
Chung, YJ ;
Krueger, C ;
Metzgar, D ;
Saier, MH .
JOURNAL OF BACTERIOLOGY, 2001, 183 (03) :1012-1021
[10]   The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling [J].
Duong, F ;
Wickner, W .
EMBO JOURNAL, 1997, 16 (16) :4871-4879