Robust Superhydrophobic Membrane for Membrane Distillation with Excellent Scaling Resistance

被引:190
作者
Su, Chunlei [1 ,2 ,3 ]
Horseman, Thomas [4 ]
Cao, Hongbin [2 ]
Christie, Kofi [1 ]
Li, Yuping [2 ]
Lin, Shihong [1 ,4 ]
机构
[1] Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA
[2] Chinese Acad Sci, Beijing Engn Res Ctr Proc Pollut Control, Inst Proc Engn, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
HOLLOW-FIBER MEMBRANE; NANOFIBER MEMBRANES; CRYSTALLIZATION BEHAVIOR; PVDF MEMBRANES; WATER RECOVERY; DRUG-DELIVERY; ELECTROSPUN; FABRICATION; MITIGATION; SURFACES;
D O I
10.1021/acs.est.9b04362
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We report in this study a scalable and controllable approach for fabricating robust and high-performance superhydrophobic membranes for membrane distillation (MD). This novel approach combines electro-co-spinning/spraying (ES2) with chemical vapor welding and enables the formation of robust superhydrophobic (r-SH) membranes that are mechanically strong, highly porous, and robustly superhydrophobic. Compared with superhydrophobic membranes obtained using surface deposition of fluorinated nanoparticles, the r-SH membranes have more robust wetting properties and higher vapor permeability in MD. MD scaling experiments with sodium chloride and gypsum show that the r-SH membrane is highly effective in mitigating mineral scaling. Finally, we also discuss the mechanism of scaling resistance enabled by superhydrophobic membranes with a highlight on the roles of the surface-bound air layer in reducing the crystal-membrane contact area, nucleation propensity, and ion-membrane contact time.
引用
收藏
页码:11801 / 11809
页数:9
相关论文
共 68 条
[1]   A review on electrospinning for membrane fabrication: Challenges and applications [J].
Ahmed, Farah Ejaz ;
Lalia, Boor Singh ;
Hashaikeh, Raed .
DESALINATION, 2015, 356 :15-30
[2]   Membrane distillation: A comprehensive review [J].
Alkhudhiri, Abdullah ;
Darwish, Naif ;
Hilal, Nidal .
DESALINATION, 2012, 287 :2-18
[3]   PVDF membrane assisted by modified hydrophobic ZnO nanoparticle for membrane distillation [J].
Ardeshiri, Fatemeh ;
Salehi, Setareh ;
Peyravi, Majid ;
Jahanshahi, Mohsen ;
Amiri, Alireza ;
Rad, Ali Shokuhi .
ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2018, 13 (03)
[4]   Superhydrophobic Vertically Aligned Carbon Nanotubes for Biomimetic Air Retention under Water (Salvinia Effect) [J].
Babu, Deepu J. ;
Mail, Matthias ;
Barthlott, Wilhelm ;
Schneider, Joerg J. .
ADVANCED MATERIALS INTERFACES, 2017, 4 (13)
[5]   Dry Under Water: Comparative Morphology and Functional Aspects of Air-Retaining Insect Surfaces [J].
Balmert, Alexander ;
Bohn, Holger Florian ;
Ditsche-Kuru, Petra ;
Barthlott, Wilhelm .
JOURNAL OF MORPHOLOGY, 2011, 272 (04) :442-451
[6]   Laminated PTFE membranes to enhance the performance in direct contact membrane distillation for high salinity solution [J].
Chen, Ying ;
Zheng, Rui ;
Wang, Jin ;
Liu, Yongjie ;
Wang, Yanqiang ;
Li, Xue-Mei ;
He, Tao .
DESALINATION, 2017, 424 :140-148
[7]   Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface - art. no. 066001 [J].
Choi, CH ;
Kim, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (06)
[8]   3D printed polyamide membranes for desalination [J].
Chowdhury, Maqsud R. ;
Steffes, James ;
Huey, Bryan D. ;
McCutcheon, Jeffrey R. .
SCIENCE, 2018, 361 (6403) :682-685
[9]   Two-step crystal nucleation via capillary condensation [J].
Christenson, Hugo K. .
CRYSTENGCOMM, 2013, 15 (11) :2030-2039
[10]  
Deshmukh A, 2018, ENERG ENVIRON SCI, V11, P1177, DOI [10.1039/c8ee00291f, 10.1039/C8EE00291F]