New Bounds for Linear Codes of Covering Radius 2

被引:7
|
作者
Bartoli, Daniele [1 ]
Davydov, Alexander A. [2 ]
Giulietti, Massimo [1 ]
Marcugini, Stefano [1 ]
Pambianco, Fernanda [1 ]
机构
[1] Perugia Univ, Dept Math & Comp Sci, Perugia, Italy
[2] Russian Acad Sci, Kharkevich Inst, Inst Informat Transmiss Problems, Moscow, Russia
来源
CODING THEORY AND APPLICATIONS, ICMCTA 2017 | 2017年 / 10495卷
关键词
Covering codes; Saturating sets; The length function; Upper bounds; Projective spaces; SATURATING SETS; PROJECTIVE SPACES; GALOIS SPACES;
D O I
10.1007/978-3-319-66278-7_1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The length function l(q)(r, R) is the smallest length of a q-ary linear code of covering radius R and codimension r. New upper bounds on l(q)(r, 2) are obtained for odd r >= 3. In particular, using the one-to-one correspondence between linear codes of covering radius 2 and saturating sets in the projective planes over finite fields, we prove that l(q)(3,2) <= root q(3lnq+lnlnq) + root q/3lnq + 3 and then obtain estimations of l(q)(r, 2) for all odd r >= 5. The new upper bounds are smaller than the previously known ones. Also, the new bounds hold for all q, not necessary large, whereas the previously best known estimations are proved only for q large enough.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] New bounds for linear codes of covering radii 2 and 3
    Bartoli, Daniele
    Davydov, Alexander A.
    Giulietti, Massimo
    Marcugini, Stefano
    Pambianco, Fernanda
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05): : 903 - 920
  • [2] New bounds for linear codes of covering radii 2 and 3
    Daniele Bartoli
    Alexander A. Davydov
    Massimo Giulietti
    Stefano Marcugini
    Fernanda Pambianco
    Cryptography and Communications, 2019, 11 : 903 - 920
  • [3] New bounds for linear codes of covering radius 3 and 2-saturating sets in projective spaces
    Davydov, Alexander A.
    Marcugini, Stefano
    Pambianco, Fernanda
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 52 - 57
  • [4] NEW BOUNDS FOR COVERING CODES OF RADIUS 3 AND CODIMENSION 3t+1
    Davydov, Alexander A.
    Marcugini, Stefano
    Pambianco, Fernanda
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (01) : 126 - 139
  • [5] UPPER BOUNDS ON THE LENGTH FUNCTION FOR COVERING CODES WITH COVERING RADIUS R AND CODIMENSION tR+1
    Davydov, Alexander A.
    Marcugini, Stefano
    Pambianco, Fernanda
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) : 98 - 118
  • [6] Linear codes with covering radius 3
    Davydov, Alexander A.
    Ostergard, Patric R. J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 253 - 271
  • [7] New covering codes of radius R, codimension tR and tR plus R/2, and saturating sets in projective spaces
    Davydov, Alexander A.
    Marcugini, Stefano
    Pambianco, Fernanda
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (12) : 2771 - 2792
  • [8] Several new lower bounds on the size of codes with covering radius one
    Blass, U
    Litsyn, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) : 1998 - 2002
  • [9] Constructions and families of nonbinary linear codes with covering radius 2
    Davydov, AA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (05) : 1679 - 1686
  • [10] Lower Bounds for q-ary Codes with Large Covering Radius
    Haas, Wolfgang
    Halupczok, Immanuel
    Schlage-Puchta, Jan-Christoph
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):