Neural regulation of the hepatic circadian rhythm

被引:32
作者
Shibata, S [1 ]
机构
[1] Waseda Univ, Sch Sci & Engn, Dept Pharmacol, Tokyo 169, Japan
来源
ANATOMICAL RECORD PART A-DISCOVERIES IN MOLECULAR CELLULAR AND EVOLUTIONARY BIOLOGY | 2004年 / 280A卷 / 01期
关键词
clock gene; adrenergic; cireadian rythm; midodrine; liver;
D O I
10.1002/ar.a.20095
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
A microarray analysis experiment has revealed that there are many genes, including so-called clock genes, expressing a circadian rhythm in the liver. The clock genes mentioned above are expressed not only in the suprachiasmatic nucleus (SCN) of the hypothalamus, where the master clock exists, but also in other brain regions and various peripheral tissues. In the liver, clock genes are abundantly expressed and show a clear circadian rhythm. Thus, clock genes seem to play a critical role in the molecular clockworks of both the SCN and the liver. Although oscillation of clock genes in the liver is controlled under the circadian clock mechanism in the SCN, we do not know the resetting signals on liver clock function. Over the past few years, use of the pseudorabies virus, a transsynaptic tract tracer, has allowed us to map neural connections between the SCN and peripheral tissues in several physiological systems. Communication between the SCN and peripheral tissues occurs through autonomic nervous systems involving the sympathetic and parasympathetic neurons. This review mainly describes both anatomical and physiological experiments to reveal the sympathetic control over liver clock function. Although further study is necessary to produce the precise mechanism underlying neural control of liver clock systems, evolution of this mechanism will help our understanding of liver clock functions such as drug metabolism and energy metabolism. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:901 / 909
页数:9
相关论文
共 61 条
[1]  
Akashi M, 2000, GENE DEV, V14, P645
[2]   Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus [J].
Akhtar, RA ;
Reddy, AB ;
Maywood, ES ;
Clayton, JD ;
King, VM ;
Smith, AG ;
Gant, TW ;
Hastings, MH ;
Kyriacou, CP .
CURRENT BIOLOGY, 2002, 12 (07) :540-550
[3]   MAP kinase-dependent induction of clock gene expression by α1-adrenergic receptor activation [J].
Akiyama, M ;
Minami, Y ;
Kuriyama, K ;
Shibata, S .
FEBS LETTERS, 2003, 542 (1-3) :109-114
[4]   Calcium and pituitary adenylate cyclase-activating polypeptide induced expression of circadian clock gene mPer1 in the mouse cerebellar granule cell culture [J].
Akiyama, M ;
Minami, Y ;
Nakajima, T ;
Moriya, T ;
Shibata, S .
JOURNAL OF NEUROCHEMISTRY, 2001, 78 (03) :499-508
[5]   Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts [J].
Balsalobre, A ;
Marcacci, L ;
Schibler, U .
CURRENT BIOLOGY, 2000, 10 (20) :1291-1294
[6]   Resetting of circadian time peripheral tissues by glucocorticoid signaling [J].
Balsalobre, A ;
Brown, SA ;
Marcacci, L ;
Tronche, F ;
Kellendonk, C ;
Reichardt, HM ;
Schütz, G ;
Schibler, U .
SCIENCE, 2000, 289 (5488) :2344-2347
[7]   A serum shock induces circadian gene expression in mammalian tissue culture cells [J].
Balsalobre, A ;
Damiola, F ;
Schibler, U .
CELL, 1998, 93 (06) :929-937
[8]   Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue [J].
Bamshad, M ;
Aoki, VT ;
Adkison, MG ;
Warren, WS ;
Bartness, TJ .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1998, 275 (01) :R291-R299
[9]   SCN efferents to peripheral tissues: Implications for biological rhythms [J].
Bartness, TJ ;
Song, CK ;
Demas, GE .
JOURNAL OF BIOLOGICAL RHYTHMS, 2001, 16 (03) :196-204
[10]   Hypothalamic integration of central and peripheral clocks [J].
Buijs, RM ;
Kalsbeek, A .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (07) :521-526