Non-Parametric Estimation of the Conditional Distribution of the Interjumping Times for Piecewise-Deterministic Markov Processes

被引:9
作者
Azais, Romain [1 ]
Dufour, Francois
Gegout-Petit, Anne
机构
[1] INRIA Bordeaux Sud Ouest, Team CQFD, Talence, France
关键词
piecewise-deterministic Markov process; ergodicity of Markov chains; non-parametric estimation; jump rate estimation; Nelson-Aalen estimator; asymptotic consistency; REGRESSION; INFERENCE;
D O I
10.1111/sjos.12076
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a non-parametric method for estimating the conditional density associated to the jump rate of a piecewise-deterministic Markov process. In our framework, the estimation needs only one observation of the process within a long time interval. Our method relies on a generalization of Aalen's multiplicative intensity model. We prove the uniform consistency of our estimator, under some reasonable assumptions related to the primitive characteristics of the process. A simulation study illustrates the behaviour of our estimator.
引用
收藏
页码:950 / 969
页数:20
相关论文
共 29 条
  • [11] Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes
    Azais, Romain
    Dufour, Francois
    Gegout-Petit, Anne
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (04): : 1204 - 1231
  • [12] NUMERICAL METHOD FOR EXPECTATIONS OF PIECEWISE DETERMINISTIC MARKOV PROCESSES
    Brandejsky, Adrien
    de Saporta, Benoite
    Dufour, Francois
    [J]. COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2012, 7 (01) : 63 - 104
  • [13] A method to compute the transition function of a piecewise deterministic Markov process with application to reliability
    Chiquet, Julien
    Limnios, Nikolaos
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1397 - 1403
  • [14] Adaptive estimation of the conditional intensity of marker-dependent counting processes
    Comte, F.
    Gaiffas, S.
    Guilloux, A.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 1171 - 1196
  • [15] COX DR, 1972, J R STAT SOC B, V34, P187
  • [16] DABROWSKA DM, 1987, SCAND J STAT, V14, P181
  • [17] OPTIMAL CAPACITY EXPANSION UNDER UNCERTAINTY
    DAVIS, MHA
    DEMPSTER, MAH
    SETHI, SP
    VERMES, D
    [J]. ADVANCES IN APPLIED PROBABILITY, 1987, 19 (01) : 156 - 176
  • [18] Optimal stopping for the predictive maintenance of a structure subject to corrosion
    de Saporta, B.
    Dufour, F.
    Zhang, H.
    Elegbede, C.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2012, 226 (O2) : 169 - 181
  • [19] Fontbona J, 2012, ADV APPL PROBAB, V44, P977
  • [20] Jacobsen M., 2006, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes