Non-Parametric Estimation of the Conditional Distribution of the Interjumping Times for Piecewise-Deterministic Markov Processes

被引:9
作者
Azais, Romain [1 ]
Dufour, Francois
Gegout-Petit, Anne
机构
[1] INRIA Bordeaux Sud Ouest, Team CQFD, Talence, France
关键词
piecewise-deterministic Markov process; ergodicity of Markov chains; non-parametric estimation; jump rate estimation; Nelson-Aalen estimator; asymptotic consistency; REGRESSION; INFERENCE;
D O I
10.1111/sjos.12076
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a non-parametric method for estimating the conditional density associated to the jump rate of a piecewise-deterministic Markov process. In our framework, the estimation needs only one observation of the process within a long time interval. Our method relies on a generalization of Aalen's multiplicative intensity model. We prove the uniform consistency of our estimator, under some reasonable assumptions related to the primitive characteristics of the process. A simulation study illustrates the behaviour of our estimator.
引用
收藏
页码:950 / 969
页数:20
相关论文
共 29 条
[11]   Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes [J].
Azais, Romain ;
Dufour, Francois ;
Gegout-Petit, Anne .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (04) :1204-1231
[12]   NUMERICAL METHOD FOR EXPECTATIONS OF PIECEWISE DETERMINISTIC MARKOV PROCESSES [J].
Brandejsky, Adrien ;
de Saporta, Benoite ;
Dufour, Francois .
COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2012, 7 (01) :63-104
[13]   A method to compute the transition function of a piecewise deterministic Markov process with application to reliability [J].
Chiquet, Julien ;
Limnios, Nikolaos .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) :1397-1403
[14]   Adaptive estimation of the conditional intensity of marker-dependent counting processes [J].
Comte, F. ;
Gaiffas, S. ;
Guilloux, A. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04) :1171-1196
[15]  
COX DR, 1972, J R STAT SOC B, V34, P187
[16]  
DABROWSKA DM, 1987, SCAND J STAT, V14, P181
[17]   OPTIMAL CAPACITY EXPANSION UNDER UNCERTAINTY [J].
DAVIS, MHA ;
DEMPSTER, MAH ;
SETHI, SP ;
VERMES, D .
ADVANCES IN APPLIED PROBABILITY, 1987, 19 (01) :156-176
[18]   Optimal stopping for the predictive maintenance of a structure subject to corrosion [J].
de Saporta, B. ;
Dufour, F. ;
Zhang, H. ;
Elegbede, C. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2012, 226 (O2) :169-181
[19]  
Fontbona J, 2012, ADV APPL PROBAB, V44, P977
[20]  
Jacobsen M., 2006, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes