Divergent architecture of the heterotrimeric NatC complex explains N-terminal acetylation of cognate substrates

被引:26
作者
Grunwald, Stephan [1 ,2 ]
Hopf, Linus V. M. [1 ,2 ]
Bock-Bierbaum, Tobias [1 ]
Lally, Ciara C. M. [3 ]
Spahn, Christian M. T. [3 ]
Daumke, Oliver [1 ,2 ]
机构
[1] Max Delbruck Ctr Mol Med, Dept Crystallog, D-13125 Berlin, Germany
[2] Free Univ Berlin, Inst Chem & Biochem, D-11195 Berlin, Germany
[3] Charite Univ Med Berlin, Inst Med Phys & Biophys, D-10117 Berlin, Germany
关键词
ARF-LIKE GTPASE; ALPHA-ACETYLTRANSFERASE; MOLECULAR-BASIS; SACCHAROMYCES-CEREVISIAE; CRYSTAL-STRUCTURE; PROTEIN; YEAST; IDENTIFICATION; GOLGI; METHIONINE;
D O I
10.1038/s41467-020-19321-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The heterotrimeric NatC complex, comprising the catalytic Naa30 and the two auxiliary subunits Naa35 and Naa38, co-translationally acetylates the N-termini of numerous eukaryotic target proteins. Despite its unique subunit composition, its essential role for many aspects of cellular function and its suggested involvement in disease, structure and mechanism of NatC have remained unknown. Here, we present the crystal structure of the Saccharomyces cerevisiae NatC complex, which exhibits a strikingly different architecture compared to previously described N-terminal acetyltransferase (NAT) complexes. Cofactor and ligand-bound structures reveal how the first four amino acids of cognate substrates are recognized at the Naa30-Naa35 interface. A sequence-specific, ligand-induced conformational change in Naa30 enables efficient acetylation. Based on detailed structure-function studies, we suggest a catalytic mechanism and identify a ribosome-binding patch in an elongated tip region of NatC. Our study reveals how NAT machineries have divergently evolved to N-terminally acetylate specific subsets of target proteins.
引用
收藏
页数:14
相关论文
共 81 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases [J].
Aksnes, Henriette ;
Ree, Rasmus ;
Arnesen, Thomas .
MOLECULAR CELL, 2019, 73 (06) :1097-1114
[3]   First Things First: Vital Protein Varks by N-Terminal Acetyltransferases [J].
Aksnes, Henriette ;
Drazic, Adrian ;
Marie, Michael ;
Arnesen, Thomas .
TRENDS IN BIOCHEMICAL SCIENCES, 2016, 41 (09) :746-760
[4]   An Organellar Nα-Acetyltransferase, Naa60, Acetylates Cytosolic N Termini of Transmembrane Proteins and Maintains Golgi Integrity [J].
Aksnes, Henriette ;
Van Damme, Petra ;
Goris, Marianne ;
Starheim, Kristian K. ;
Marie, Michael ;
Stove, Svein Isungset ;
Hoel, Camilla ;
Kalvik, Thomas Vikestad ;
Hole, Kristine ;
Glomnes, Nina ;
Furnes, Clemens ;
Ljostveit, Sonja ;
Ziegler, Mathias ;
Niere, Marc ;
Gevaert, Kris ;
Arnesen, Thomas .
CELL REPORTS, 2015, 10 (08) :1362-1374
[5]   Cloning and characterization of hNAT5/hSAN:: An evolutionarily conserved component of the NatA protein N-α-acetyltransferase complex [J].
Arnesen, T ;
Anderson, D ;
Torsvik, J ;
Halseth, HB ;
Varhaug, JE ;
Lillehaug, JR .
GENE, 2006, 371 (02) :291-295
[6]   Identification and characterization of the human ARD1-NATH protein acetyltransferase complex [J].
Arnesen, T ;
Anderson, D ;
Baldersheim, C ;
Lanotte, M ;
Varhaug, JE ;
Lillehaug, JR .
BIOCHEMICAL JOURNAL, 2005, 386 :433-443
[7]   Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans [J].
Arnesen, Thomas ;
Van Damme, Petra ;
Polevoda, Bogdan ;
Helsens, Kenny ;
Evjenth, Rune ;
Colaert, Niklaas ;
Varhaug, Jan Erik ;
Vandekerckhove, Joel ;
Lillehaug, Johan R. ;
Sherman, Fred ;
Gevaert, Kris .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (20) :8157-8162
[8]   Targeting of the arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p [J].
Behnia, R ;
Panic, B ;
Whyte, JRC ;
Munro, S .
NATURE CELL BIOLOGY, 2004, 6 (05) :405-+
[9]   Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase [J].
Chen, Ji-Yun ;
Liu, Liang ;
Cao, Chun-Ling ;
Li, Mei-Jun ;
Tan, Kemin ;
Yang, Xiaohan ;
Yun, Cai-Hong .
SCIENTIFIC REPORTS, 2016, 6
[10]   The Buccaneer software for automated model building.: 1.: Tracing protein chains [J].
Cowtan, Kevin .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2006, 62 :1002-1011