BMO-Type Norms Related to the Perimeter of Sets

被引:28
作者
Ambrosio, Luigi [1 ]
Bourgain, Jean [2 ]
Brezis, Haim [3 ,4 ]
Figalli, Alessio [5 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56100 Pisa, Italy
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[3] Rutgers State Univ, Dept Math, Hill Ctr, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[4] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[5] Univ Texas Austin, Dept Math, 2515 Speedway Stop C1200, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
ISOPERIMETRIC INEQUALITY;
D O I
10.1002/cpa.21620
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an isotropic variant of the BMO-type norm recently introduced (Bourgain, Brezis, and Mironescu, 2015). We prove that, when considering characteristic functions of sets, this norm is related to the perimeter. A byproduct of our analysis is a new characterization of the perimeter of sets in terms of this norm, independent of the theory of distributions.(c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1062 / 1086
页数:25
相关论文
共 14 条
  • [1] Ambrosio L., 2000, Oxford Mathematical Monographs
  • [2] Bakry D, 1996, INVENT MATH, V123, P259, DOI 10.1007/BF01232376
  • [3] Some remarks on isoperimetry of Gaussian type
    Barthe, F
    Maurey, B
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (04): : 419 - 434
  • [4] A functional form of the isoperimetric inequality for the Gaussian measure
    Bobkov, S
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) : 39 - 49
  • [5] Bobkov SG, 1997, ANN PROBAB, V25, P206
  • [6] Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
  • [7] A new function space and applications
    Bourgain, Jean
    Brezis, Haim
    Mironescu, Petru
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (09) : 2083 - 2101
  • [8] How to recognize constant functions.: Connections with Sobolev spaces
    Brézis, H
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) : 693 - 708
  • [9] On an open question about functions of bounded variation
    Dávila, J
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 15 (04) : 519 - 527
  • [10] De Giorgi E., 1955, Ricerche Mat., V4, P95