Modular interpolation and modular estimates of the Fourier transform and related operators

被引:5
作者
Ho, Kwok-Pun [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Tai Po, Hong Kong, Peoples R China
关键词
Modular inequality; Fourier transform; interpolation; Hankel transform; oscillatory integrals; Fourier restriction; FUNCTION-SPACES; INEQUALITIES; INTEGRALS;
D O I
10.4171/RLM/767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an approach to modular interpolation in this paper. By using this interpolation, we establish the modular inequalities for the Fourier transform, the Laplace transform, the Hankel transform and the oscillatory integral operators. Moreover, we also obtain the modular Fourier restriction theorem.
引用
收藏
页码:349 / 368
页数:20
相关论文
共 26 条
[1]  
[Anonymous], 1995, MATH JAPON
[2]  
[Anonymous], 1991, Weighted Inequalities in Lorentz and Orlicz Spaces
[3]  
[Anonymous], 1984, Pure and applied mathematics
[4]  
Bennett C., 1988, Interpolation of operators
[5]  
Bongioanni B., 2003, REV UNION MAT ARGENT, V44, P31
[6]   Modular inequalities for the Calderon operator [J].
Carro, MJ ;
Heinig, H .
TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (01) :31-46
[7]  
Carro MJ, 2003, J MATH SOC JPN, V55, P385
[8]   Hardy inequalities in Orlicz spaces [J].
Cianchi, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (06) :2459-2478
[9]   EQUICONVERGENCE THEOREMS FOR FOURIER-BESSEL EXPANSIONS WITH APPLICATIONS TO THE HARMONIC-ANALYSIS OF RADIAL FUNCTIONS IN EUCLIDEAN AND NON-EUCLIDEAN SPACES [J].
COLZANI, L ;
CRESPI, A ;
TRAVAGLINI, G ;
VIGNATI, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :43-55
[10]  
Cruz-Uribe D. V., 2011, EXTRAPOLATION THEORY, V215