Evolution of specific interface area during solidification: A three-dimensional thermosolutal phase-field study

被引:16
作者
Zhang, Ang [1 ,2 ]
Du, Jinglian [2 ]
Guo, Zhipeng [3 ]
Wang, Qigui [4 ]
Xiong, Shoumei [2 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[3] Beijing Supreium Co Ltd, Beijing 100089, Peoples R China
[4] GM Global Prop Syst, Mat Technol, Pontiac, MI 48340 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Dendrite growth; Interface area; Phase-field simulation; Solidification; DENDRITIC GROWTH; MORPHOLOGICAL EVOLUTION; GRAIN-GROWTH; RECRYSTALLIZATION; MICROSTRUCTURES; IMPINGEMENT; SIMULATIONS; SCHEME; MODEL;
D O I
10.1016/j.cpc.2021.108042
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
By developing a multilevel thermosolutal phase-field lattice-Boltzmann method, we achieve three-dimensional phase-field simulations of dendrite growth with realistic Lewis number (Le similar to 10(4)) in equivalently over 10(8) uniform meshes. In addition to parallel computing and mesh adaptivity, the high-performance computing algorithm allows the time step enlarged by 2-3 orders of magnitude in an explicit scheme. Dependence of specific interface area, an integral measure of solidification microstructure, on time t and solid fraction f(s) is revisited including the t(1/3) coarsening law and f(s)(p)(1 - f(s))(q) growth law (p and q are constants). The effect of latent heat on the evolution of specific interface area is evaluated, and such effect is equivalent to isothermal case or frozen-temperature approximation if Le exceeds 5000. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Modeling of growth and impingement of spherical grains [J].
Almansour, A ;
Matsugi, K ;
Hatayama, T ;
Yanagisawa, O .
MATERIALS TRANSACTIONS JIM, 1996, 37 (10) :1595-1601
[2]   Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts [J].
Bragard, J ;
Karma, A ;
Lee, YH ;
Plapp, M .
INTERFACE SCIENCE, 2002, 10 (2-3) :121-136
[3]  
CAHN JW, 1967, T METALL SOC AIME, V239, P610
[4]  
Dantzig JA., 2009, Solidification, V1
[5]   Rapid solidification as non-ergodic phenomenon [J].
Galenko, P. K. ;
Jou, D. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 818 :1-70
[6]   Solute trapping in rapid solidification of a binary dilute system: A phase-field study [J].
Galenko, P. K. ;
Abramova, E. V. ;
Jou, D. ;
Danilov, D. A. ;
Lebedev, V. G. ;
Herlach, D. M. .
PHYSICAL REVIEW E, 2011, 84 (04)
[7]   An Adaptive, Multilevel Scheme for the Implicit Solution of Three-Dimensional Phase-Field Equations [J].
Green, J. R. ;
Jimack, P. K. ;
Mullis, A. M. ;
Rosam, J. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (01) :106-120
[8]   The morphological evolution of dendritic microstructures during coarsening [J].
Kammer, D ;
Voorhees, PW .
ACTA MATERIALIA, 2006, 54 (06) :1549-1558
[9]   Quantitative phase-field modeling of dendritic growth in two and three dimensions [J].
Karma, A ;
Rappel, WJ .
PHYSICAL REVIEW E, 1998, 57 (04) :4323-4349
[10]  
Kruger T, 2017, GRAD TEXTS PHYS, P1, DOI 10.1007/978-3-319-44649-3