Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds

被引:22
作者
Freitas, Pedro [1 ,2 ]
Mao, Jing [3 ]
Salavessa, Isabel [3 ]
机构
[1] Univ Lisbon, Fac Human Kinet, Dept Math, P-1699 Lisbon, Portugal
[2] Univ Lisbon, Grp Math Phys, P-1649003 Lisbon, Portugal
[3] Univ Lisbon, Inst Super Tecn, Ctr Fis Interacoes Fundamentais, P-1049001 Lisbon, Portugal
关键词
35P15; 58C40;
D O I
10.1007/s00526-013-0692-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a manifold , we build two spherically symmetric model manifolds based on the maximum and the minimum of its curvatures. We then show that the first Dirichlet eigenvalue of the Laplace-Beltrami operator on a geodesic disk of the original manifold can be bounded from above and below by the first eigenvalue on geodesic disks with the same radius on the model manifolds. These results may be seen as extensions of Cheng's eigenvalue comparison theorems, where the model constant curvature manifolds have been replaced by more general spherically symmetric manifolds. To prove this, we extend Rauch's and Bishop's comparison theorems to this setting.
引用
收藏
页码:701 / 724
页数:24
相关论文
共 21 条
[1]  
[Anonymous], 1983, SEMIRIEMANNIAN GEOME
[2]  
BALLMANN W, 1987, J DIFFER GEOM, V25, P249
[3]  
BARROSO C. S., 2006, MAT CONT, V30, P63
[4]  
Barroso CS, 2006, INT J APPL MATH STAT, V6, P82
[5]  
BARTA J., 1937, CR HEBD ACAD SCI, V204, P472
[6]  
Borisov D., SHARP SPECT IN PRESS
[7]   Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem [J].
Brandolini, B. ;
Freitas, P. ;
Nitsch, C. ;
Trombetti, C. .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :2352-2365
[8]   SPECTRA OF DOMAINS IN COMPACT MANIFOLDS [J].
CHAVEL, I ;
FELDMAN, EA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 30 (02) :198-222
[9]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[10]  
CHEEGER J, 1975, N HOLLAND MATH LIB, V9