Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs

被引:7
作者
Becker, Roland [1 ]
Brunner, Maximilian [2 ]
Innerberger, Michael [2 ]
Melenk, Jens Markus [2 ]
Praetorius, Dirk [2 ]
机构
[1] Univ Pau & Pays Adour, IPRA LMAP, Ave Univ BP 1155, PAU, France
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10-E101-4, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Adaptive finite element method; Semilinear PDEs; Quantity of interest; A posteriori error estimation; Goal-oriented adaptive algorithm; Optimal convergence rates; OPTIMAL CONVERGENCE-RATES; ELEMENT METHODS;
D O I
10.1016/j.camwa.2022.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and analyze a goal-oriented adaptive finite element method for a semilinear elliptic PDE and a linear goal functional. The discretization is based on finite elements of arbitrary (but fixed) polynomial degree and involves a linearized dual problem. The linearization is part of the proposed algorithm, which employs a marking strategy different to that of standard adaptive finite element methods. Moreover, unlike the wellknown dual-weighted residual strategy, the analyzed error estimators are completely computable. We prove linear convergence and, for the first time in the context of goal-oriented adaptivity for nonlinear PDEs, optimal algebraic convergence rates. In particular, the analysis does not require a sufficiently fine initial mesh.
引用
收藏
页码:18 / 35
页数:18
相关论文
共 37 条
  • [1] FULLY ADAPTIVE NEWTON-GALERKIN METHODS FOR SEMILINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Amrein, Mario
    Wihler, Thomas P.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04) : A1637 - A1657
  • [2] [Anonymous], 2003, Lectures in mathematics ETH Zurich
  • [3] [Anonymous], 1990, NONLINEAR FUNCTIONAL
  • [4] [Anonymous], 1977, Function Spaces
  • [5] Bank R.E., 2011, PREPRINT
  • [6] Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
  • [7] Becker R., ARXIV210111407, P2021
  • [8] Optimal Convergence Rates for Goal-Oriented FEM with Quadratic Goal Functional
    Becker, Roland
    Innerberger, Michael
    Praetorius, Dirk
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (02) : 267 - 288
  • [9] WEIGHTED MARKING FOR GOAL-ORIENTED ADAPTIVE FINITE ELEMENT METHODS
    Becker, Roland
    Estecahandy, Elodie
    Trujillo, David
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2451 - 2469
  • [10] Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems
    Bespalov, Alex
    Haberl, Alexander
    Praetorius, Dirk
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 317 : 318 - 340