K-SEMISTABILITY FOR IRREGULAR SASAKIAN MANIFOLDS

被引:40
作者
Collins, Tristan C. [1 ]
Szekelyhidi, Gabor [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Univ Notre Dame, Dept Math, South Bend, IN USA
关键词
KAHLER-RICCI FLOW; EINSTEIN MANIFOLDS; SCALAR CURVATURE; EXTREMAL METRICS; STABILITY; GEOMETRY; OBSTRUCTIONS; CONJECTURE; VARIETIES; EXISTENCE;
D O I
10.4310/jdg/1525399217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of K-semistability for Sasakian manifolds. This extends to the irregular case of the orbifold K-semistability of Ross-Thomas. Our main result is that a Sasakian manifold with constant scalar curvature is necessarily K-semistable. As an application, we show how one can recover the volume minimization results of Martelli-Sparks-Yau, and the Lichnerowicz obstruction of Gauntlett-Martelli-Sparks-Yau from this point of view.
引用
收藏
页码:81 / 109
页数:29
相关论文
共 45 条
[1]  
[Anonymous], 1957, Nagoya Math. J.
[2]  
[Anonymous], ARXIV08124093
[3]  
[Anonymous], 1999, Adv. Theor. Math. Phys.
[4]  
[Anonymous], MACAULAY2 SOFTWARE S
[5]  
[Anonymous], 2009, Current developments in mathematics 2007
[6]   Hamiltonian 2-forms in Kahler geometry, III Extremal metrics and stability [J].
Apostolov, Vestislav ;
Calderbank, DavidM. J. ;
Gauduchon, Paul ;
Tonnesen-Friedman, Christina W. .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :547-601
[7]  
AUBIN T, 1978, B SCI MATH, V102, P63
[8]   ON THE IMBEDDING OF V-MANIFOLDS IN PROJECTIVE SPACE [J].
BAILY, WL .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (02) :403-430
[9]  
Boyer C. P., 2008, Sasakian Geometry
[10]   Canonical sasakian metrics [J].
Boyer, Charles P. ;
Galicki, Krzysztof ;
Simanca, Santiago R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (03) :705-733