3D Numerical Model of the Thermal Interaction Between Sediment-Water-Atmosphere

被引:2
作者
Vitale, Alejandro J. [1 ,2 ]
Piccolo, M. Cintia [1 ,3 ]
Genchi, Sibila A. [1 ]
Delrieux, Claudio A. [1 ,2 ]
Perillo, Gerardo M. E. [1 ,4 ]
机构
[1] Inst Argentino Oceanog IADO CONICET, Bahia Blanca, Buenos Aires, Argentina
[2] Univ Nacl Sur, Dept Ingn Elect & Comp, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[3] Univ Nacl Sur, Dept Geog & Turismo, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[4] Univ Nacl Sur, Dept Geol, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
3D numerical model; Finite-difference method; Heat flux; Sediment-water-atmosphere; Saltmarsh; Hemera 1.0 software tool; BAHIA-BLANCA ESTUARY; SURFACE-TEMPERATURE; FORTH ESTUARY; TIDAL FLAT; HEAT-FLUX; SIMULATION;
D O I
10.1007/s10666-014-9406-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper describes a three-dimensional numerical model of heat flux using finite-difference approximation for the simulation, prediction, and visualization of sediment, water, and air temperature, applied in Villa del Mar saltmarsh, Bahia Blanca Estuary, Argentina. To make this computation, we develop an open-source software tool called Hemera 1.0 which is characterized by having little complexity and low hardware requirements. The model considers three heat transfer processes: diffusion, convection, and radiation, using bulk aerodynamic formulas as boundary conditions between the interfaces. The aforementioned model was applied for the month of January 2009. The model reproduced adequately the physical processes of the heat balance and showed an adequate response to changes in the boundary conditions. In addition, according to the model design, meteorological and oceanographic data and some soil properties are the only data input used for modeling. It is easily adaptable to other environments such us lakes and reservoirs, among others, in order to carry out similar studies.
引用
收藏
页码:467 / 485
页数:19
相关论文
共 46 条
[1]   Estimating soil thermal properties from sequences of land surface temperature using hybrid Genetic Algorithm-Finite Difference method [J].
Bateni, S. M. ;
Jeng, D. -S. ;
Naeini, S. M. Mortazavi .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (07) :1425-1436
[2]   Heat transport dynamics at a sandy intertidal zone [J].
Befus, Kevin M. ;
Cardenas, M. Bayani ;
Erler, Dirk V. ;
Santos, Isaac R. ;
Eyre, Bradley D. .
WATER RESOURCES RESEARCH, 2013, 49 (06) :3770-3786
[3]  
Beigt D, 2008, CIENC MAR, V34, P1
[4]   Modeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability [J].
Beletsky, D ;
Schwab, DJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2001, 106 (C9) :19745-19771
[5]   EFFECTIVE RESISTANCE TO SENSIBLE-HEAT AND LATENT-HEAT FLUX IN HETEROGENEOUS TERRAIN [J].
BLYTH, EM ;
DOLMAN, AJ ;
WOOD, N .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1993, 119 (511) :423-442
[6]   ON PARTIAL DIFFERENCE EQUATIONS OF MATHEMATICAL PHYSICS [J].
COURANT, R ;
FRIEDRICHS, K ;
LEWY, H .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1967, 11 (02) :215-+
[7]   Surface Flux Observations on the Southeastern Tropical Pacific Ocean and Attribution of SST Errors in Coupled Ocean-Atmosphere Models [J].
de Szoeke, Simon P. ;
Fairall, Christopher W. ;
Wolfe, Daniel E. ;
Bariteau, Ludovic ;
Zuidema, Paquita .
JOURNAL OF CLIMATE, 2010, 23 (15) :4152-4174
[8]   Temperature variability in lake sediments [J].
Fang, X ;
Stefan, HG .
WATER RESOURCES RESEARCH, 1998, 34 (04) :717-729
[9]  
Ferreira D., 2010, P AGU 2010 OC SCI M, P22
[10]   A one-dimensional model of vertical stratification of Lake Shira focussed on winter conditions and ice cover [J].
Genova, S. N. ;
Belolipetskii, V. M. ;
Rogozin, D. Y. ;
Degermendzhy, A. G. ;
Mooij, W. M. .
AQUATIC ECOLOGY, 2010, 44 (03) :571-584