Random block matrices generalizing the classical Jacobi and Laguerre ensembles

被引:0
作者
Guhlich, Matthias [1 ]
Nagel, Jan [1 ]
Dette, Holger [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
关键词
DIMENSIONAL RANDOM MATRICES; BETA-ENSEMBLES; POLYNOMIALS; EIGENVALUES; THEOREM; MODELS;
D O I
10.1016/j.jmva.2010.03.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider random block matrices which generalize the classical Laguerre ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices can be uniformly approximated by the zeros of matrix orthogonal polynomials and obtain a rate for the maximum difference between the eigenvalues and the zeros. This relation between the random block matrices and matrix orthogonal polynomials allows a derivation of the asymptotic spectral distribution of the matrices. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1884 / 1897
页数:14
相关论文
共 25 条