Scaling computational genomics to millions of individuals with GPUs

被引:94
|
作者
Taylor-Weiner, Amaro [1 ,2 ]
Aguet, Francois [1 ]
Haradhvala, Nicholas J. [1 ]
Gosai, Sager [1 ,2 ]
Anand, Shankara [1 ]
Kim, Jaegil [1 ]
Ardlie, Kristin [1 ]
Van Allen, Eliezer M. [1 ,3 ,5 ]
Getz, Gad [1 ,4 ,6 ,7 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Pathol, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[6] Massachusetts Gen Hosp, Canc Ctr, Boston, MA 02114 USA
[7] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
关键词
D O I
10.1186/s13059-019-1836-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Current genomics methods are designed to handle tens to thousands of samples but will need to scale to millions to match the pace of data and hypothesis generation in biomedical science. Here, we show that high efficiency at low cost can be achieved by leveraging general-purpose libraries for computing using graphics processing units (GPUs), such as PyTorch and TensorFlow. We demonstrate > 200-fold decreases in runtime and 5-10-fold reductions in cost relative to CPUs. We anticipate that the accessibility of these libraries will lead to a widespread adoption of GPUs in computational genomics.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Scaling computational genomics to millions of individuals with GPUs
    Amaro Taylor-Weiner
    François Aguet
    Nicholas J. Haradhvala
    Sager Gosai
    Shankara Anand
    Jaegil Kim
    Kristin Ardlie
    Eliezer M. Van Allen
    Gad Getz
    Genome Biology, 20
  • [2] Scaling computational genomics to millions of individuals with GPUs
    Taylor-Weiner, Amaro N.
    Aguet, Francois
    Haradhvala, Nicholas
    Gosai, Sager
    Kim, Jaegil
    Ardlie, Kristin
    Van Allen, Eliezer M.
    Getz, Gad
    CANCER RESEARCH, 2019, 79 (13)
  • [3] Manycraft: Scaling Minecraft to Millions
    Diaconu, Raluca
    Keller, Joaquin
    Valero, Mathieu
    2013 12TH ANNUAL WORKSHOP ON NETWORK AND SYSTEMS SUPPORT FOR GAMES (NETGAMES 2013), 2013,
  • [4] TECHNOLOGY FOR MILLIONS OR HEALING FOR INDIVIDUALS
    HOLMES, A
    COMMUNITY HEALTH STUDIES, 1979, 3 (03): : 203 - 206
  • [5] TECHNOLOGY FOR MILLIONS OR HEALING FOR INDIVIDUALS
    HOLMES, A
    COMMUNITY HEALTH STUDIES, 1978, 2 (2-3): : 110 - 110
  • [6] Scaling database performance on GPUs
    Yue-Shan Chang
    Ruey-Kai Sheu
    Shyan-Ming Yuan
    Jyn-Jie Hsu
    Information Systems Frontiers, 2012, 14 : 909 - 924
  • [7] Scaling database performance on GPUs
    Chang, Yue-Shan
    Sheu, Ruey-Kai
    Yuan, Shyan-Ming
    Hsu, Jyn-Jie
    INFORMATION SYSTEMS FRONTIERS, 2012, 14 (04) : 909 - 924
  • [8] GPUs in a computational physics course
    Adler, Joan
    Nissim, Gal
    Kiswani, Ahmad
    28TH ANNUAL IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2016), 2017, 905
  • [9] Scaling the Maximum Flow Computation on GPUs
    Khatri, Jash
    Samar, Arihant
    Behera, Bikash
    Nasre, Rupesh
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2022, 50 (5-6) : 515 - 561
  • [10] Scaling the Maximum Flow Computation on GPUs
    Jash Khatri
    Arihant Samar
    Bikash Behera
    Rupesh Nasre
    International Journal of Parallel Programming, 2022, 50 : 515 - 561