On the Estimation and Control of Nonlinear Systems With Parametric Uncertainties and Noisy Outputs

被引:115
作者
Alberto Meda-Campana, Jesus [1 ]
机构
[1] Inst Politecn Nacl, Secc Estudios Posgrad & Invest, Escuela Super Ingn Mecan & Elect, Unidad Zacatenco, Gustavo A Madero 07738, Mexico
来源
IEEE ACCESS | 2018年 / 6卷
关键词
Control systems; nonlinear systems; stochastic systems; state estimation; filtering; KALMAN FILTER; DYNAMICS;
D O I
10.1109/ACCESS.2018.2846483
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In real-time problems, the possibilities of having a precise mathematical model describing the dynamics of the nonlinear system are scarce. Besides, the measurements invariably are tainted with noise which makes the problem of estimating the actual states of the system more difficult. The most common way of solving this issue involves the application of the Kalman Filter (KF) or the Extended Kalman Filter (EKF), for linear and nonlinear systems, respectively; although in both cases, the estimation heavily relies on linear techniques. In a different way, the James-Stein Filter provides a robust approach to estimate linear and nonlinear systems under parametric uncertainties of the mathematical model. In this brief note, a slightly different James-Stein State Estimator (JSSE), named Modified James-Stein State Estimator (JSSE-M), is presented as an alternative to filtering the states of nonlinear systems within a control scheme. The main contribution of this paper is the comparison of performance between KF, EKF, JSSE, and JSSE-M when they are used on a relatively complex nonlinear system which is extremely dependent on its parameters, namely the quadrotor. In this sense, some interesting comparisons focused on both, the effectiveness and processing time are provided.
引用
收藏
页码:31968 / 31973
页数:6
相关论文
共 13 条
  • [1] Exploring the dynamics of financial markets: from stock prices to strategy returns
    Borland, Lisa
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 88 : 59 - 74
  • [2] Carrillo LRG, 2013, ADV IND CONTROL, P1, DOI 10.1007/978-1-4471-4399-4
  • [3] Chui C., 1989, Kalman Filtering with Real-Time Applications, V28
  • [4] An analysis of heart rhythm dynamics using a three-coupled oscillator model
    Gois, Sandra R. F. S. M.
    Savi, Marcelo A.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2553 - 2565
  • [5] Robust Kalman filter for Descriptor systems
    Ishihara, Joao Y.
    Terra, Marco H.
    Campos, Jose C. T.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (08) : 1354 - 1358
  • [6] James W., 1961, P 4 BERK S MATH STAT, V1, P311
  • [7] ROBUST POLE ASSIGNMENT IN LINEAR STATE FEEDBACK
    KAUTSKY, J
    NICHOLS, NK
    VANDOOREN, P
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (05) : 1129 - 1155
  • [8] Kontorovich V. Y., 2010, ISAST T COMPUTERS IN, V1, P34
  • [9] James-Stein state filtering algorithms
    Manton, JH
    Krishnamurthy, V
    Poor, HV
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (09) : 2431 - 2447
  • [10] Discrete-time Kalman filter for Takagi–Sugeno fuzzy models
    Páramo-Carranza L.A.
    Meda-Campaña J.A.
    de Jesús Rubio J.
    Tapia-Herrera R.
    Curtidor-López A.V.
    Grande-Meza A.
    Cázares-Ramírez I.
    [J]. Evolving Systems, 2017, 8 (03) : 211 - 219