Two-Dimensional (2D) particle swarms for structure selection of nonlinear systems

被引:9
作者
Hafiz, Faizal [1 ]
Swain, Akshya [1 ]
Mendes, Eduardo M. A. M. [2 ]
机构
[1] Univ Auckland, Dept Elect & Comp Engn, Auckland, New Zealand
[2] Univ Fed Minas Gerais, Dept Elect Engn, Belo Horizonte, MG, Brazil
关键词
Nonlinear systems; NARX model; Particle swarm optimization; Structure selection; System identification; MODEL STRUCTURE SELECTION; FREQUENCY-RESPONSE; PARAMETER-ESTIMATION; GENETIC ALGORITHMS; NARX MODELS; IDENTIFICATION; REGRESSION; INPUT; TESTS; OPTIMIZATION;
D O I
10.1016/j.neucom.2019.07.071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present study proposes a new structure selection approach for non-linear system identification based on Two-Dimensional particle swarms (2D-UPSO). The 2D learning framework essentially extends the learning dimension of the conventional particle swarms and explicitly incorporates information about the cardinality (i.e., number of terms) into the search process. This property of the 2D-UPSO is exploited to determine the correct structure of the non-linear systems. The efficacy of the proposed approach is demonstrated by considering several simulated benchmark nonlinear systems in discrete and continuous domains. In addition, the proposed approach is applied to identify a parsimonious structure from practical non-linear wave-force data. The results of the comparative investigation with four meta-heuristic algorithms and classical orthogonal forward regression methods illustrate that the proposed 2D-UPSO can successfully detect the correct structure of the non-linear systems. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 129
页数:16
相关论文
共 72 条
[1]   DYNAMICAL EFFECTS OF OVERPARAMETRIZATION IN NONLINEAR MODELS [J].
AGUIRRE, LA ;
BILLINGS, SA .
PHYSICA D, 1995, 80 (1-2) :26-40
[2]   Global nonlinear polynomial models: Structure, term clusters and fixed points [J].
Aguirre, LA ;
Mendes, EMAM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (02) :279-294
[3]  
[Anonymous], 1996, PROC 13 IFAC WORLD C
[4]   Distributed randomized model structure selection for NARX models [J].
Avellina, M. ;
Brankovic, A. ;
Piroddi, L. .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (12) :1853-1870
[5]   Computational system identification for Bayesian NARMAX modelling [J].
Baldacchino, Tara ;
Anderson, Sean R. ;
Kadirkamanathan, Visakan .
AUTOMATICA, 2013, 49 (09) :2641-2651
[6]   Structure detection and parameter estimation for NARX models in a unified EM framework [J].
Baldacchino, Tara ;
Anderson, Sean R. ;
Kadirkamanathan, Visakan .
AUTOMATICA, 2012, 48 (05) :857-865
[7]   A randomised approach for NARX model identification based on a multivariate Bernoulli distribution [J].
Bianchi, F. ;
Falsone, A. ;
Prandini, M. ;
Piroddi, L. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (06) :1203-1216
[8]   An adaptive orthogonal search algorithm for model subset selection and non-linear system identification [J].
Billings, S. A. ;
Wei, H. L. .
INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (05) :714-724
[9]   IDENTIFICATION OF MIMO NON-LINEAR SYSTEMS USING A FORWARD-REGRESSION ORTHOGONAL ESTIMATOR [J].
BILLINGS, SA ;
CHEN, S ;
KORENBERG, MJ .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (06) :2157-2189
[10]  
Billings SA, 2013, NONLINEAR SYSTEM IDENTIFICATION: NARMAX METHODS IN THE TIME, FREQUENCY, AND SPATIO-TEMPORAL DOMAINS, P1, DOI 10.1002/9781118535561