Hausdorff compactifications

被引:1
作者
Insall, Matt [1 ]
Loeb, Peter A. [2 ]
Marciniak, Malgorzata Aneta [3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, 400 W 12th St, Rolla, MO 65409 USA
[2] Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
[3] CUNY, LaGuardia Community Coll, Dept Math Engn & Comp Sci, 31-10 Thomson Ave, Long Isl City, NY USA
关键词
Compactifications; Hausdorff compactifications; Nonstandard methods; Moduli space; NONSTANDARD;
D O I
10.1016/j.topol.2021.107699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Previously, the authors used the insights of Robinson's nonstandard analysis as a powerful tool to extend and simplify the construction of some compactifications of regular spaces. They now show that any Hausdorff compactification is obtainable with their method. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 11 条
[1]  
Behrendt K, 2014, INTRO ALGEBRAIC STAC
[2]  
Brandt M, 2020, YOUTUBE VIDEO
[3]  
Doob J., 1984, GRUNDLEHREN MATH WIS
[4]  
Insall M, 2012, TOPOL P, V40, P1
[5]   End Compactifications and General Compactifications [J].
Insall, Matt ;
Loeb, Peter A. ;
Marciniak, Malgorzata Aneta .
JOURNAL OF LOGIC AND ANALYSIS, 2014, 6
[6]   COMPACTIFICATIONS OF HAUSDORFF SPACES [J].
LOEB, PA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (03) :627-&
[7]  
Loeb Peter, 2015, Nonstandard analysis for the working mathematician, VSecond
[8]   An intuitive approach to the Martin boundary [J].
Loeb, Peter A. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (05) :879-884
[9]   COMPACTIFICATION OF GROUPS AND RINGS AND NONSTANDARD ANALYSIS [J].
ROBINSON, A .
JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (04) :576-&
[10]  
Robinson A., 1966, NONSTANDARD ANAL