Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel

被引:41
作者
Hu Guilin
Fan Jianren [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clear Energy Utilizat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Light Ind, Hangzhou 310023, Peoples R China
关键词
proton exchange membrane fuel cell; transient model; computation fluid dynamics;
D O I
10.1016/j.jpowsour.2006.11.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm(2). The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during startup process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 184
页数:14
相关论文
共 19 条
[1]   A model predicting transient responses of proton exchange membrane fuel cells [J].
Amphlett, JC ;
Mann, RF ;
Peppley, BA ;
Roberge, PR ;
Rodrigues, A .
JOURNAL OF POWER SOURCES, 1996, 61 (1-2) :183-188
[2]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[3]  
Bird R.B., 2006, TRANSPORT PHENOMENA, Vsecond, DOI 10.1002/aic.690070245
[4]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[5]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[6]   Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields [J].
Hu, GL ;
Fan, JR ;
Chen, S ;
Liu, YJ ;
Cen, KF .
JOURNAL OF POWER SOURCES, 2004, 136 (01) :1-9
[7]   The effect of stoichiometry on dynamic behavior of a proton exchange membrane fuel cell (PEMFC) during load change [J].
Kim, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF POWER SOURCES, 2004, 135 (1-2) :110-121
[8]   The effect of reservoirs and fuel dilution on the dynamic behavior of a PEMFC [J].
Kim, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF POWER SOURCES, 2004, 137 (01) :43-52
[9]   A new dynamic model for predicting transient phenomena in a PEM fuel cell system [J].
Pathapati, PR ;
Xue, X ;
Tang, J .
RENEWABLE ENERGY, 2005, 30 (01) :1-22
[10]   POLYMER ELECTROLYTE FUEL-CELL MODEL [J].
SPRINGER, TE ;
ZAWODZINSKI, TA ;
GOTTESFELD, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) :2334-2342