Compact, separable, linearly ordered spaces

被引:9
|
作者
Rudin, ME [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
monotone normality; compact; continuous image; linearly ordered; separable;
D O I
10.1016/S0166-8641(97)00068-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proof that a compact, separable, zero-dimensional, monotonically normal space is always a continuous image of a compact linearly ordered space is given. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:397 / 419
页数:23
相关论文
共 50 条
  • [1] Compact separable radial spaces
    Dow, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (04): : 422 - 432
  • [2] ON HOMOGENEOUS IMAGES OF COMPACT ORDERED SPACES
    NIKIEL, J
    TYMCHATYN, ED
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (02): : 380 - 393
  • [3] Hereditarily paracompact and compact monotonically normal spaces
    Rudin, ME
    TOPOLOGY AND ITS APPLICATIONS, 2001, 111 (1-2) : 179 - 189
  • [4] Separable zero-dimensional spaces which are continuous images of ordered compacta
    Nikiel, J
    Purisch, S
    Treybig, LB
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01): : 45 - 56
  • [5] Ultrafilter Convergence in Ordered Topological Spaces
    Lipparini, Paolo
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2016, 33 (02): : 269 - 287
  • [6] Rotundity in transitive and separable Banach spaces
    Aizpuru, A.
    Garcia-Pacheco, F. J.
    QUAESTIONES MATHEMATICAE, 2007, 30 (01) : 85 - 96
  • [7] Remarks on weakly linearly Lindelof spaces
    Xuan, Wei-Feng
    Song, Yan-Kui
    TOPOLOGY AND ITS APPLICATIONS, 2019, 262 : 41 - 49
  • [8] Indestructibility of compact spaces
    Dias, Rodrigo R.
    Tall, Franklin D.
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (18) : 2411 - 2426
  • [9] Base multiplicity in compact and generalized compact spaces
    Balogh, Z
    Gruenhage, G
    TOPOLOGY AND ITS APPLICATIONS, 2001, 115 (02) : 139 - 151
  • [10] Locally compact groups with all dense subgroups separable
    Peng, Dekui
    FORUM MATHEMATICUM, 2025,