Supercritical Antisolvent Micronization of Cyclotrimethylenetrinitramin: Influence of the Organic Solvent

被引:31
作者
Lee, Byoung-Min [1 ,2 ]
Jeong, Jin-Seong [1 ,2 ]
Lee, Young-Ho [1 ,2 ]
Lee, Byung-Chul [3 ]
Kim, Hyoun-Soo [4 ]
Kim, Hwayong [1 ,2 ]
Lee, Youn-Woo [1 ,2 ]
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151744, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, Seoul 151744, South Korea
[3] Hannam Univ, Dept Chem Engn & Nanobio Technol, Taejon 305811, South Korea
[4] Agcy Def Dev, High Explos Team, Taejon 305600, South Korea
关键词
THERMAL-DECOMPOSITION; ENERGETIC MATERIAL; SIZE-REDUCTION; PARTICLES; FLUIDS; RDX; PRECIPITATION; POLYMER; RECRYSTALLIZATION;
D O I
10.1021/ie900448w
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A supercritical antisolvent (SAS) process was used to prepare micronized cyclotrimethylenetrinitramin (RDX). This study examined the influence of different solvents at a fixed temperature (50 degrees C) and pressure (13.7 or 15 MPa) on the morphology, particle size (PS), and particle size distribution (PSD) using a semicontinuous SAS process, Dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone (AC), acetonitrile (ACN), n-methyl 2-pyrrolidone (NMP), and cyclohexanone (CHN) were used as solvents. The recrystallized RDX particles were characterized by scanning electron microscopy (SEM), particle size analyzer (PSA), Fourier transform infrared (FT-IR) spectroscopy, and differential scanning calorimetry (DSC). Depending on the solvent used, the recrystallized RDX particles showed a variety of morphologies, particle sizes, and particle size distributions (PSD). The mean particle size of the recrystallized RDX ranged from 2.6 to 17.7 mu m. The enthalpy change (Delta H = 583.4, 847.7, 967.1, 823.9, 1131, and 1620 J/g) for the exothermic decomposition of recrystallized RDX was much higher than that of the unprocessed RDX (Delta H = 381.5 J/g).
引用
收藏
页码:11162 / 11167
页数:6
相关论文
共 26 条
[1]   Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process [J].
Bleich, J ;
Muller, BW .
JOURNAL OF MICROENCAPSULATION, 1996, 13 (02) :131-139
[2]  
Cai J.-G., 1997, P 4 INT S SUP FLUIDS, P23
[3]   Particle size effects on thermal decomposition of energetic material [J].
Fathollahi, M. ;
Pourmortazavi, S. M. ;
Hosseini, S. G. .
JOURNAL OF ENERGETIC MATERIALS, 2008, 26 (01) :52-69
[4]  
FORTERBARTH U, 1999, P 6 M SUP FLUIDS CHE, P175
[5]  
Gallagher P.M., 1991, AICHE SYM SER, V284, P96
[6]   GAS ANTISOLVENT RECRYSTALLIZATION OF RDX - FORMATION OF ULTRA-FINE PARTICLES OF A DIFFICULT-TO-COMMINUTE EXPLOSIVE [J].
GALLAGHER, PM ;
COFFEY, MP ;
KRUKONIS, VJ ;
HILLSTROM, WW .
JOURNAL OF SUPERCRITICAL FLUIDS, 1992, 5 (02) :130-142
[7]  
GALLAGHER PM, 1989, ACS SYM SER, V406, P334
[8]  
Gupta R.B., 2007, Solubility in Supercritical Carbon Dioxide, P269
[9]   The thermal decomposition behavior of RDX-base propellants [J].
Jing, WW ;
Dang, ZM ;
Yang, GP .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2005, 79 (01) :107-113
[10]   Particle design using supercritical fluids: Literature and patent survey [J].
Jung, J ;
Perrut, M .
JOURNAL OF SUPERCRITICAL FLUIDS, 2001, 20 (03) :179-219