Nonlinear non-Hermitian skin effect

被引:32
作者
Yuce, Cem [1 ]
机构
[1] Eskisehir Tech Univ, Fac Sci, Dept Phys, Eskisehir, Turkey
关键词
Non-Hermitian skin effect; Non-Hermitian quantum theory; Nonlinear non-Hermitian systems;
D O I
10.1016/j.physleta.2021.127484
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Distant boundaries in linear non-Hermitian lattices can dramatically change energy eigenvalues and corresponding eigenstates in a nonlocal way. This effect is known as non-Hermitian skin effect (NHSE). Combining non-Hermitian skin effect with nonlinear effects can give rise to a host of novel phenomenas, which may be used for nonlinear structure designs. Here we study nonlinear non-Hermitian skin effect and explore nonlocal and substantial effects of edges on stationary nonlinear solutions. We show that fractal and continuum bands arise in a long lattice governed by a nonreciprocal discrete nonlinear Schrodinger equation. We show that stationary solutions are localized at the edge in the continuum band. We consider a non-Hermitian Ablowitz-Ladik model and show that nonlinear exceptional point disappears if the lattice is infinitely long. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 41 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]   Non-Hermitian boundary and interface states in nonreciprocal higher-order topological metals and electrical circuits [J].
Ezawa, Motohiko .
PHYSICAL REVIEW B, 2019, 99 (12)
[3]   Topological bound modes in optical waveguide arrays with alternating positive and negative couplings [J].
Fu, Nianzu ;
Fu, Ziwei ;
Zhang, Huaiyuan ;
Liao, Qing ;
Zhao, Dong ;
Ke, Shaolin .
OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (02)
[4]   Extended SSH Model in Non-Hermitian Waveguides with Alternating Real and Imaginary Couplings [J].
Fu, Ziwei ;
Fu, Nianzu ;
Zhang, Huaiyuan ;
Wang, Zhe ;
Zhao, Dong ;
Ke, Shaolin .
APPLIED SCIENCES-BASEL, 2020, 10 (10)
[5]   Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial [J].
Ghatak, Ananya ;
Brandenbourger, Martin ;
van Wezel, Jasper ;
Coulais, Corentin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (47) :29561-29568
[6]   Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits [J].
Helbig, T. ;
Hofmann, T. ;
Imhof, S. ;
Abdelghany, M. ;
Kiessling, T. ;
Molenkamp, L. W. ;
Lee, C. H. ;
Szameit, A. ;
Greiter, M. ;
Thomale, R. .
NATURE PHYSICS, 2020, 16 (07) :747-+
[7]   Special modes induced by inter-chain coupling in a non-Hermitian ladder system [J].
Huang, Rong ;
Yan, Yu ;
Zhang, Zhi-Xu ;
Qi, Lu ;
Wang, Hong-Fu ;
Zhang, Shou .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (10)
[8]   Generalized bulk-edge correspondence for non-Hermitian topological systems [J].
Imura, Ken-Ichiro ;
Takane, Yositake .
PHYSICAL REVIEW B, 2019, 100 (16)
[9]   Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices [J].
Jiang, Hui ;
Lang, Li-Jun ;
Yang, Chao ;
Zhu, Shi-Liang ;
Chen, Shu .
PHYSICAL REVIEW B, 2019, 100 (05)
[10]   Extended Bloch theorem for topological lattice models with open boundaries [J].
Kunst, Flore K. ;
van Miert, Guido ;
Bergholtz, Emil J. .
PHYSICAL REVIEW B, 2019, 99 (08)