On the Effect of Noise Correlation in Parameter Identification of SIMO Systems

被引:3
|
作者
Everitt, Niklas [1 ]
Bottegal, Giulio
Rojas, Cristian R.
Hjalmarsson, Hakan
机构
[1] KTH Royal Inst Technol, Dept Automat Control, Sch Elect Engn, Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 28期
关键词
VARIANCE ANALYSIS; MODELS;
D O I
10.1016/j.ifacol.2015.12.148
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The accuracy of identified linear time-invariant single-input multi-output (SIMO) models can be improved when the disturbances affecting the output measurements are spatially correlated. Given a linear parametrization of the modules composing the SIMO structure, we show that the correlation structure of the noise sources and the model structure of the outer modules determine the variance of a parameter estimate. In particular we show that I I [creasing the model order only increases the variance of other modules up to a point. We precisely characterize the variance error of the parameter estimates for finite model orders. We quantify the effect of noise correlation structure, model structure and signal spectra. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:326 / 331
页数:6
相关论文
共 50 条
  • [31] Optimal parameter identification of photovoltaic systems based on enhanced differential evolution optimization technique
    Parida, Shubhranshu Mohan
    Pattanaik, Vivekananda
    Panda, Subhasis
    Rout, Pravat Kumar
    Sahu, Binod Kumar
    Bajaj, Mohit
    Blazek, Vojtech
    Prokop, Lukas
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [32] Particle Swarm Optimization Iterative Identification Algorithm and Gradient Iterative Identification Algorithm for Wiener Systems with Colored Noise
    Li, Junhong
    Li, Xiao
    COMPLEXITY, 2018,
  • [33] Parameter identification in a probabilistic setting
    Rosic, Bojana V.
    Kucerova, Anna
    Sykora, Jan
    Pajonk, Oliver
    Litvinenko, Alexander
    Matthies, Hermann G.
    ENGINEERING STRUCTURES, 2013, 50 : 179 - 196
  • [34] Exponentially distributed noise-its correlation function and its effect on nonlinear dynamics
    Farah, George N.
    Lindner, Benjamin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (03)
  • [35] Two-Stage Recursive Least Squares Parameter Identification for Cascade Systems with Dead Zone
    Li, Linwei
    Ren, Xuemei
    Zhao, Wei
    Wang, Minlin
    PROCEEDINGS OF 2016 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL II, 2016, 405 : 255 - 265
  • [36] Data-Driven Classification, Reduction, Parameter Identification and State Extension in Hybrid Power Systems
    Saric, Andrija T.
    Transtrum, Mark K.
    Stankovic, Aleksandar M.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2222 - 2233
  • [37] Convergence Analysis of a Real-Time Identification Algorithm for Switched Linear Systems with Bounded Noise
    Goudjil, Abdelhak
    Pouliquen, Mathieu
    Pigeon, Eric
    Gehan, Olivier
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2957 - 2962
  • [38] Embedded multiple shooting methodology in a genetic algorithm framework for parameter estimation and state identification of complex systems
    Sarode, Ketan Dinkar
    Kumar, V. Ravi
    Kulkarni, B. D.
    CHEMICAL ENGINEERING SCIENCE, 2015, 134 : 605 - 618
  • [39] Robust Identification of Nonlinear Errors-in-Variables Systems With Parameter Uncertainties Using Variational Bayesian Approach
    Guo, Fan
    Kodamana, Hariprasad
    Zhao, Yujia
    Huang, Biao
    Ding, Yongsheng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (06) : 3047 - 3057
  • [40] New approach to noncausal identification of nonstationary stochastic systems subject to both smooth and abrupt parameter changes
    Niedzwiecki, Maciej
    Gackowski, Szymon
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 889 - 894