Geodesic equivalence via integrability

被引:48
作者
Topalov, P
Matveev, VS
机构
[1] Univ Zurich, Math Inst, CH-8057 Zurich, Switzerland
[2] BAS, Math Inst, Sofia 1113, Bulgaria
[3] Univ Freiburg, Math Inst, D-7800 Freiburg, Germany
基金
英国工程与自然科学研究理事会;
关键词
geodesically equivalent metrics; integrable systems; Levi-Civita coordinates; projectively equivalent metrics;
D O I
10.1023/A:1022166218282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We suggest a construction that, given an orbital diffeomorphism between two Hamiltonian systems, produces integrals of them. We treat geodesic equivalence of metrics as the main example of it. In this case, the integrals commute; they are functionally independent if the eigenvalues of the tensor g(ialpha)(g) over bar (alphaj) are all different; if the eigenvalues are all different at least at one point then they are all different at almost each point and the geodesic flows of the metrics are Lionville integrable. This gives us topological obstacles to geodesic equivalence.
引用
收藏
页码:91 / 115
页数:25
相关论文
共 29 条
[11]   COMPACT LIOUVILLE SURFACES [J].
KIYOHARA, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1991, 43 (03) :555-591
[12]  
Kobayashi S, 1995, CLASSICS MATH
[13]  
Kolokoltsov V.N., 1983, MATH USSR IZV, V21, P291, DOI 10.1070/IM1983v021n02ABEH001792
[14]  
Levi-Civita T., 1896, Ann. di Mat., V24, P255
[15]  
LICHNEROWICZ A, 1968, CR ACAD SCI PARIS A, V267, pA548
[16]  
Matveev VS, 1999, DOKL AKAD NAUK+, V367, P736
[17]   Quantum integrability of Beltrami-Laplace operator as geodesic equivalence [J].
Matveev, VS ;
Topalov, PJ .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (04) :833-866
[18]  
Matveev VS., 1998, Regul. Chaotic Dyn, V3, P30, DOI [10.1070/rd1998v003n02ABEH000069, DOI 10.1070/RD1998V003N02ABEH000069]
[19]  
MATVEEV VS, 2000, RUSSIAN MATH DOKL, V61, P216
[20]  
Mikes J., 1996, Journal of Mathematical Sciences, V78, P311, DOI DOI 10.1007/BF02365193