Composite Estimation for Single-Index Models with Responses Subject to Detection Limits

被引:10
作者
Tang, Yanlin [1 ]
Wang, Huixia Judy [2 ]
Liang, Hua [2 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
[2] George Washington Univ, Dept Stat, 801 22nd St NW, Washington, DC 20052 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
censored quantile regression; composite quantile estimator; detection limit; informative subset estimation; Powell's estimator; Tobit model; CENSORED QUANTILE REGRESSION; VARIABLE SELECTION; INTERQUANTILE SHRINKAGE; SPLINE ESTIMATION; EFFICIENT; INFERENCE;
D O I
10.1111/sjos.12307
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a semiparametric estimator for single-index models with censored responses due to detection limits. In the presence of left censoring, the mean function cannot be identified without any parametric distributional assumptions, but the quantile function is still identifiable at upper quantile levels. To avoid parametric distributional assumption, we propose to fit censored quantile regression and combine information across quantile levels to estimate the unknown smooth link function and the index parameter. Under some regularity conditions, we show that the estimated link function achieves the non-parametric optimal convergence rate, and the estimated index parameter is asymptotically normal. The simulation study shows that the proposed estimator is competitive with the omniscient least squares estimator based on the latent uncensored responses for data with normal errors but much more efficient for heavy-tailed data under light and moderate censoring. The practical value of the proposed method is demonstrated through the analysis of a human immunodeficiency virus antibody data set.
引用
收藏
页码:444 / 464
页数:21
相关论文
共 63 条
[1]  
[Anonymous], 2007, THESIS
[2]   Novel Statistical Approaches for Non-Normal Censored Immunological Data: Analysis of Cytokine and Gene Expression Data [J].
Ballenberger, Nikolaus ;
Lluis, Anna ;
von Mutius, Erika ;
Illi, Sabina ;
Schaub, Bianca .
PLOS ONE, 2012, 7 (10)
[3]   l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
ANNALS OF STATISTICS, 2011, 39 (01) :82-130
[4]   A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits [J].
Bernhardt, Paul W. ;
Zhang, Daowen ;
Wang, Huixia Judy .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 :37-53
[5]  
Bucher A., 2014, Single-index quantile regression models for censored data
[6]   An alternative estimator for the censored quantile regression model [J].
Buchinsky, M ;
Hahn, JY .
ECONOMETRICA, 1998, 66 (03) :653-671
[7]   Generalized partially linear single-index models [J].
Carroll, RJ ;
Fan, JQ ;
Gijbels, I ;
Wand, MP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :477-489
[8]  
Chaudhuri P, 1997, ANN STAT, V25, P715
[9]   Estimating censored regression models in the presence of nonparametric multiplicative heteroskedasticity [J].
Chen, SN ;
Khan, SK .
JOURNAL OF ECONOMETRICS, 2000, 98 (02) :283-316
[10]   Nonparametric identification and estimation of a censored location-scale regression model [J].
Chen, SN ;
Dahl, GB ;
Khan, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :212-221