Automatic Segmentation in Multiple OCT Layers For Stargardt Disease Characterization Via Deep Learning

被引:17
作者
Mishra, Zubin [1 ,2 ]
Wang, Ziyuan [1 ,3 ]
Sadda, SriniVas R. [1 ,3 ]
Hu, Zhihong [1 ]
机构
[1] Doheny Eye Inst, Doheny Image Anal Lab, Los Angeles, CA 90033 USA
[2] Case Western Reserve Univ, Sch Med, Cleveland, OH USA
[3] Univ Calif Los Angeles, Los Angeles, CA USA
基金
美国国家卫生研究院;
关键词
Stargardt disease; deep learning; retinal layer segmentation; retinal layer characterization; ATROPHY SECONDARY; FUNDUS AUTOFLUORESCENCE; RETINAL LAYER; PROGRESSION; PROGSTAR; IMAGES; BOUNDARIES;
D O I
10.1167/tvst.10.4.24
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: This study sought to perform automated segmentation of 11 retinal layers and Stargardt-associated features on spectral-domain optical coherence tomography (SDOCT) images and to analyze differences between normal eyes and eyes diagnosed with Stargardt disease. Methods: Automated segmentation was accomplished through application of the deep learning?shortest path (DL-SP) framework, a shortest path segmentation approach that is enhanced by a deep learning fully convolutional neural network. To compare normal eyes and eyes diagnosed with Stargardt disease, various retinal layer thickness and intensity feature maps associated with the outer retinal layers were generated. Results: The automated DL-SP approach achieved a mean difference within a subpixel accuracy range for all layers when compared to manually traced layers by expert graders. The algorithm achieved mean and absolute mean differences in border positions for Stargardt features of ?0.11 ? 4.17 pixels and 1.92 ? 3.71 pixels, respectively. In several of the feature maps generated, the characteristic Stargardt features of flecks and atrophicappearing lesions were readily visualized. Conclusions: To the best of our knowledge, this is the first automated algorithm for 11 retinal layer segmentation on OCT in eyes with Stargardt disease, and, furthermore, the feature differences found between eyes diagnosed with Stargardt disease and normal eyes may inform new insights and the better understanding of retinal characteristic morphologic changes caused by Stargardt disease. Translational Relevance: The automated algorithm?s performance and the feature differences found using the algorithm?s segmentation support the future applications of SD-OCT for the quantitative monitoring of Stargardt disease.
引用
收藏
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 2009, P SPIE
[2]   Transduction of Photoreceptors With Equine Infectious Anemia Virus Lentiviral Vectors: Safety and Biodistribution of StarGen for Stargardt Disease [J].
Binley, Katie ;
Widdowson, Peter ;
Loader, Julie ;
Kelleher, Michelle ;
Iqball, Sharifah ;
Ferrige, Georgina ;
de Belin, Jackie ;
Carlucci, Marie ;
Angell-Manning, Diana ;
Hurst, Felicity ;
Ellis, Scott ;
Miskin, James ;
Fernandes, Alcides ;
Wong, Paul ;
Allikmets, Rando ;
Bergstrom, Christopher ;
Aaberg, Thomas ;
Yan, Jiong ;
Kong, Jian ;
Gouras, Peter ;
Prefontaine, Annick ;
Vezina, Mark ;
Bussieres, Martin ;
Naylor, Stuart ;
Mitrophanous, Kyriacos A. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (06) :4061-4071
[3]   Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation [J].
Chiu, Stephanie J. ;
Li, Xiao T. ;
Nicholas, Peter ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
OPTICS EXPRESS, 2010, 18 (18) :19413-19428
[4]   Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search [J].
Fang, Leyuan ;
Cunefare, David ;
Wang, Chong ;
Guymer, Robyn H. ;
Li, Shutao ;
Farsiu, Sina .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (05) :2732-2744
[5]  
Fujimoto JG, 1998, ANN NY ACAD SCI, V838, P96
[6]   Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images [J].
Garvin, Mona Kathryn ;
Abramoff, Michael David ;
Wu, Xiaodong ;
Russell, Stephen R. ;
Burns, Trudy L. ;
Sonka, Milan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) :1436-1447
[7]   Multiple layer segmentation and analysis in three-dimensional spectral-domain optical coherence tomography volume scans [J].
Hu, Zhihong ;
Wu, Xiaodong ;
Hariri, Amirhossein ;
Sadda, Srinivas R. .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (07)
[8]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181
[9]  
Joanes DN, 1998, J ROY STAT SOC D-STA, V47, P183
[10]   Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy [J].
Kong, J. ;
Kim, S-R ;
Binley, K. ;
Pata, I. ;
Doi, K. ;
Mannik, J. ;
Zernant-Rajang, J. ;
Kan, O. ;
Iqball, S. ;
Naylor, S. ;
Sparrow, J. R. ;
Gouras, P. ;
Allikmets, R. .
GENE THERAPY, 2008, 15 (19) :1311-1320