On the edit distance of powers of cycles

被引:0
作者
Berikkyzy, Zhanar [1 ]
Martin, Ryan R. [2 ]
Peck, Chelsea
机构
[1] Univ Calif Riverside, Dept Math, 900 Univ Ave, Riverside, CA 92521 USA
[2] Iowa State Univ, Dept Math, 396 Carver Hall,411 Morrill Rd, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Edit distance; Colored regularity graphs; Powers of cycles;
D O I
10.1016/j.disc.2018.09.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The edit distance between two graphs on the same labeled vertex set is defined to be the size of the symmetric difference of their edge sets. The edit distance function of a hereditary property H is a function of p is an element of[0, 1] that measures, in the limit, the maximum normalized edit distance between a graph of density p and H. The expression H = Forb(H) denotes the property of having no induced subgraph isomorphic to H. In this paper, we address the edit distance function for the hereditary property Forb (C-h(t)), where C-h(t) denotes the t(th) power of the cycle of length h. For h >= 2t(t + 1) + 1 and h not divisible by t + 1, we determine the function for all values of p. For h >= 2t(t + 1) + 1 and h divisible by t + 1, the function is obtained for all but small values of p. We also obtain edit distance functions for some smaller values of h. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2804 / 2817
页数:14
相关论文
共 11 条
  • [1] What is the furthest graph from a hereditary property?
    Alon, Noga
    Stav, Uri
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (01) : 87 - 104
  • [2] [Anonymous], 2001, INTRO GRAPH THEORY
  • [3] On the editing distance of graphs
    Axenovich, Maria
    Kezdy, Andre
    Martin, Ryan
    [J]. JOURNAL OF GRAPH THEORY, 2008, 58 (02) : 123 - 138
  • [4] Balogh J, 2008, ELECTRON J COMB, V15
  • [5] Dirac G. A., 1952, Proc. London Math. Soc, V3, P69, DOI DOI 10.1112/PLMS/S3-2.1.69
  • [6] Marchant E, 2010, BOLYAI SOC MATH STUD, V20, P239
  • [7] Martin R, 2013, ELECTRON J COMB, V20
  • [8] On the computation of edit distance functions
    Martin, Ryan R.
    [J]. DISCRETE MATHEMATICS, 2015, 338 (02) : 291 - 305
  • [9] On the Edit Distance from K2,t-Free Graphs
    Martin, Ryan R.
    McKay, Tracy
    [J]. JOURNAL OF GRAPH THEORY, 2014, 77 (02) : 117 - 143
  • [10] Ore O., 1960, Am Math Monthly, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]