Fashionist: Personalising Outfit Recommendation for Cold-Start Scenarios

被引:5
作者
Verma, Dhruv [1 ]
Gulati, Kshitij [1 ]
Goel, Vasu [1 ]
Shah, Rajiv Ratn [1 ]
机构
[1] Indraprastha Inst Informat Technol, Delhi, India
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
关键词
personalised outfit recommendation; cold-start problem; fashion concept prediction; multi-task learning;
D O I
10.1145/3394171.3414446
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the proliferation of the online fashion industry, there have been increased efforts towards building cutting-edge solutions for personalising fashion recommendation. Despite this, the technology is still limited by its poor performance on new entities, i.e. the cold-start problem. We attempt to address the cold-start problem for new users, by leveraging a novel visual preference modelling approach on a small set of input images. Additionally, we describe our proposed strategy to incorporate the modelled preference in occasion-oriented outfit recommendation. Finally, we propose Fashionist: a real-time web application to demonstrate our approach enabling personalised and diverse outfit recommendation for cold-start scenarios. Check out https://youtu.be/kuKgPCkoPy0 for demonstration.
引用
收藏
页码:4527 / 4529
页数:3
相关论文
共 18 条
[1]  
[Anonymous], 2012, INT C MULTIMEDIA ACM, DOI [10.1145/2393347.2393433, DOI 10.1145/2393347.2393433]
[2]  
Aranganayagi S., 2009, IMPROVED K MODES CAT, DOI DOI 10.5281/ZEN0D0.1070405
[3]   K-modes clustering [J].
Chaturvedi, A ;
Green, PE ;
Carroll, JD .
JOURNAL OF CLASSIFICATION, 2001, 18 (01) :35-55
[4]   POG: Personalized Outfit Generation for Fashion Recommendation at Alibaba iFashion [J].
Chen, Wen ;
Huang, Pipei ;
Xu, Jiaming ;
Guo, Xin ;
Guo, Cheng ;
Sun, Fei ;
Li, Chao ;
Pfadler, Andreas ;
Zhao, Huan ;
Zhao, Binqiang .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2662-2670
[5]   Personalized Fashion Recommendation with Visual Explanations based on Multimodal Attention Network [J].
Chen, Xu ;
Chen, Hanxiong ;
Xu, Hongteng ;
Zhang, Yongfeng ;
Cao, Yixin ;
Qin, Zheng ;
Zha, Hongyuan .
PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, :765-774
[6]   Learning Fashion Compatibility with Bidirectional LSTMs [J].
Han, Xintong ;
Wu, Zuxuan ;
Jiang, Yu-Gang ;
Davis, Larry S. .
PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, :1078-1086
[7]  
Howard A. G., 2017, MobileNets: efficient convolutional neural networks for mobile vision applications
[8]   Collaborative Fashion Recommendation: A Functional Tensor Factorization Approach [J].
Hu, Yang ;
Yi, Xi ;
Davis, Larry S. .
MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, :129-138
[9]   Facing the cold start problem in recommender systems [J].
Lika, Blerina ;
Kolomvatsos, Kostas ;
Hadjiefthymiades, Stathes .
EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (04) :2065-2073
[10]   DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations [J].
Liu, Ziwei ;
Luo, Ping ;
Qiu, Shi ;
Wang, Xiaogang ;
Tang, Xiaoou .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1096-1104