Cosmic No-Hair in Spherically Symmetric Black Hole Spacetimes

被引:6
作者
Costa, Joao L. [1 ,3 ]
Natario, Jose [2 ,3 ]
Oliveira, Pedro [2 ,3 ]
机构
[1] Lisbon Univ Inst ISCTE, Dept Math, Lisbon, Portugal
[2] ULisboa, Inst Super Tecn, Dept Math, Lisbon, Portugal
[3] ULisboa, Inst Super Tecn, CAMGSD, Lisbon, Portugal
来源
ANNALES HENRI POINCARE | 2019年 / 20卷 / 09期
关键词
NONLINEAR FUTURE STABILITY; EINSTEIN-VLASOV SYSTEM; ASYMPTOTIC-BEHAVIOR; SCALAR FIELD; FLRW FAMILY; EXISTENCE; EQUATIONS;
D O I
10.1007/s00023-019-00825-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze in detail the geometry and dynamics of the cosmological region arising in spherically symmetric black hole solutions of the Einstein-Maxwell-scalar field system with a positive cosmological constant. More precisely, we solve, for such a system, a characteristic initial value problem with data emulating a dynamic cosmological horizon. Our assumptions are fairly weak, in that we only assume that the data approach that of a subextremal Reissner-Nordstrom-de Sitter black hole, without imposing any rate of decay. We then show that the radius (of symmetry) blows up along any null ray parallel to the cosmological horizon ("near" i(+)), in such a way that r = +infinity is, in an appropriate sense, a spacelike hypersurface. We also prove a version of the cosmic no-hair conjecture by showing that in the past of any causal curve reaching infinity both the metric and the Riemann curvature tensor asymptote to those of a de Sitter spacetime. Finally, we discuss conditions under which all the previous results can be globalized.
引用
收藏
页码:3059 / 3090
页数:32
相关论文
共 30 条
[1]  
Andreasson H., JEMS
[2]  
[Anonymous], ARXIV161204489
[3]   GLOBAL STRUCTURE OF A BLACK-HOLE COSMOS AND ITS EXTREMES [J].
BRILL, DR ;
HAYWARD, SA .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) :359-370
[4]   Stationary Black Holes: Uniqueness and Beyond [J].
Chrusciel, Piotr T. ;
Costa, Joao Lopes ;
Heusler, Markus .
LIVING REVIEWS IN RELATIVITY, 2012, 15
[5]  
Costa J. L., DECAY SOLUTION UNPUB
[6]  
Costa J. L., ARXIV170708975
[7]   On the global uniqueness for the Einstein-Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion [J].
Costa, Joao L. ;
Girao, Pedro M. ;
Natario, Jose ;
Silva, Jorge Drumond .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (01)
[8]   The spherically symmetric Einstein-scalar field system with positive and vanishing cosmological constant: a comparison [J].
Costa, Joao L. .
GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (12) :2415-2440
[9]   The Problem of a Self-Gravitating Scalar Field with Positive Cosmological Constant [J].
Costa, Joao L. ;
Alho, Artur ;
Natario, Jose .
ANNALES HENRI POINCARE, 2013, 14 (05) :1077-1107
[10]   On the Global Uniqueness for the Einstein-Maxwell-Scalar Field System with a Cosmological Constant [J].
Costa, Joo L. ;
Girao, Pedro M. ;
Natario, Jos ;
Silva, Jorge Drumond .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (03) :903-947