Poisson-Nernst-Planck Systems for Narrow Tubular-Like Membrane Channels

被引:74
作者
Liu, Weishi [1 ]
Wang, Bixiang [2 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
基金
美国国家科学基金会;
关键词
Poisson-Nernst-Planck system; Global attractors; Upper semi-continuity; QUALITATIVE PROPERTIES; SEMICONDUCTOR THEORY; BASIC EQUATIONS; TIME BEHAVIOR; THIN DOMAINS; ION CHANNELS; DIFFUSION; PERTURBATION; BOUNDEDNESS; TRANSPORT;
D O I
10.1007/s10884-010-9186-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study global asymptotic behavior of Poisson-Nernst-Planck (PNP) systems for flow of two ion species through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zero, a one-dimensional limiting PNP system is derived. This one-dimensional limiting system differs from previously studied one-dimensional PNP systems in that it encodes the defining geometry of the three-dimensional membrane channel. To justify this limiting process, we show that the global attractors of the three-dimensional PNP systems are upper semi-continuous as the radius of the channel tends to zero.
引用
收藏
页码:413 / 437
页数:25
相关论文
共 25 条
[1]   Ion flow through narrow membrane channels: part II [J].
Barcilon, Victor ;
Chen, D.-P. ;
Eisenberg, R.S. .
SIAM Journal on Applied Mathematics, 1992, 52 (05) :1405-1425
[2]   Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study [J].
Barcilon, V ;
Chen, DP ;
Eisenberg, RS ;
Jerome, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (03) :631-648
[3]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[4]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[5]   Poisson-Nernst-Planck systems for ion channels with permanent charges [J].
Eisenberg, Bob ;
Liu, Weishi .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) :1932-1966
[6]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35
[7]   SEMICONDUCTOR EQUATIONS FOR VARIABLE MOBILITIES BASED ON BOLTZMANN STATISTICS OR FERMI-DIRAC STATISTICS [J].
GAJEWSKI, H ;
GROGER, K .
MATHEMATISCHE NACHRICHTEN, 1989, 140 :7-36
[8]   INITIAL BOUNDARY-VALUE-PROBLEMS FROM SEMICONDUCTOR-DEVICE THEORY [J].
GROGER, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (08) :345-355
[10]   A DAMPED HYPERBOLIC EQUATION ON THIN DOMAINS [J].
HALE, JK ;
RAUGEL, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) :185-219