From Pulses to Circuits and Back Again: A Quantum Optimal Control Perspective on Variational Quantum Algorithms

被引:77
作者
Magann, Alicia B. [1 ,2 ]
Arenz, Christian [3 ]
Grace, Matthew D. [2 ]
Ho, Tak-San [3 ]
Kosut, Robert L. [3 ,4 ]
McClean, Jarrod R. [5 ]
Rabitz, Herschel A. [3 ]
Sarovar, Mohan [2 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Sandia Natl Labs, Extreme Scale Data Sci & Analyt, Livermore, CA 94550 USA
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[4] SC Solut, Sunnyvale, CA 94085 USA
[5] Google Res, 340 Main St, Venice, CA 90291 USA
来源
PRX QUANTUM | 2021年 / 2卷 / 01期
关键词
MECHANICAL SYSTEMS; ERROR MITIGATION; CONTROLLABILITY; DYNAMICS; DESIGN;
D O I
10.1103/PRXQuantum.2.010101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The last decade has witnessed remarkable progress in the development of quantum technologies. Although fault-tolerant devices likely remain years away, the noisy intermediate-scale quantum devices of today may be leveraged for other purposes. Leading candidates are variational quantum algorithms (VQAs), which have been developed for applications including chemistry, optimization, and machine learning, but whose implementations on quantum devices have yet to demonstrate improvements over classical capabilities. In this Perspective, we propose a variety of ways that the performance of VQAs could be informed by quantum optimal control theory. A major theme throughout is the need for sufficient control resources in VQA implementations; we discuss different ways this need can manifest, outline a variety of open questions, and look to the future.
引用
收藏
页数:16
相关论文
共 158 条
[1]  
Abrams D. M., 2019, ARXIV191204424
[2]   Reachability Deficits in Quantum Approximate Optimization [J].
Akshay, V ;
Philathong, H. ;
Morales, M. E. S. ;
Biamonte, J. D. .
PHYSICAL REVIEW LETTERS, 2020, 124 (09)
[3]   The Lie algebra structure and controllability of spin systems [J].
Albertini, F ;
D'Alessandro, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 350 (1-3) :213-235
[4]   Minimum time optimal synthesis for two level quantum systems [J].
Albertini, Francesca ;
D'Alessandro, Domenico .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
[5]   Controllability of quantum mechanical systems by root space decomposition of su(N) [J].
Altafini, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2051-2062
[6]  
Arenz C., 2020, ARXIV200402729QUANTP
[7]   Controlling Qubit Networks in Polynomial Time [J].
Arenz, Christian ;
Rabitz, Herschel .
PHYSICAL REVIEW LETTERS, 2018, 120 (22)
[8]   The roles of drift and control field constraints upon quantum control speed limits [J].
Arenz, Christian ;
Russell, Benjamin ;
Burgarth, Daniel ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2017, 19
[9]   Universal control induced by noise [J].
Arenz, Christian ;
Burgarth, Daniel ;
Facchi, Paolo ;
Giovannetti, Vittorio ;
Nakazato, Hiromichi ;
Pascazio, Saverio ;
Yuasa, Kazuya .
PHYSICAL REVIEW A, 2016, 93 (06)
[10]   Control of open quantum systems: case study of the central spin model [J].
Arenz, Christian ;
Gualdi, Giulia ;
Burgarth, Daniel .
NEW JOURNAL OF PHYSICS, 2014, 16